78 research outputs found
Enterokinase and IAV Infection
Cleavage and activation of hemagglutinin (HA) by trypsin-like proteases in influenza A virus (IAV) are essential prerequisites for its successful infection and spread. In host cells, some transmembrane serine proteases such as TMPRSS2, TMPRSS4 and HAT, along with plasmin in the bloodstream, have been reported to cleave the HA precursor (HA0) molecule into its active forms, HA1 and HA2. Some trypsinogens can also enhance IAV proliferation in some cell types (e.g., rat cardiomyoblasts). However, the precise activation mechanism for this process is unclear, because the expression level of the physiological activator of the trypsinogens, the TMPRSS15 enterokinase, is expected to be very low in such cells, with the exception of duodenal cells. Here, we show that at least two variant enterokinases are expressed in various human cell lines, including A549 lung-derived cells. The exogenous expression of these enterokinases was able to enhance the proliferation of IAV in 293T human kidney cells, but the proliferation was reduced by knocking down the endogenous enterokinase in A549 cells. The enterokinase was able to enhance HA processing in the cells, which activated trypsinogen in vitro and in the IAV-infected cells also. Therefore, we conclude that enterokinase plays a role in IAV infection and proliferation by activating trypsinogen to process viral HA in human cell lines
Early-stage antibody kinetics after the third dose of BNT162b2 mRNA COVID-19 vaccination measured by a point-of-care fingertip whole blood testing
Amid the Coronavirus Disease 2019 pandemic, we aimed to demonstrate the accuracy of the fingertip whole blood sampling test (FWT) in measuring the antibody titer and uncovering its dynamics shortly after booster vaccination. Mokobio SARS-CoV-2 IgM & IgG Quantum Dot immunoassay (Mokobio Biotechnology R&D Center Inc., MD, USA) was used as a point-of-care FWT in 226 health care workers (HCWs) who had received two doses of the BNT162b2 mRNA vaccine (Pfizer-BioNTech) at least 8 months prior. Each participant tested their antibody titers before and after the third-dose booster up to 14-days. The effect of the booster was observed as early as the fourth day after vaccination, which exceeded the detection limit (>30,000 U/mL) by 2.3% on the fifth day, 12.2% on the sixth day, and 22.5% after the seventh day. Significant positive correlations were observed between the pre- and post-vaccination (the seventh and eighth days) antibody titers (correlation coefficient, 0.405; p<0.001). FWT is useful for examining antibody titers as a point-of-care test. Rapid response of antibody titer started as early as the fourth day post-vaccination, while the presence of weak responders to BNT162b2 vaccine was indicated
Close-to-threshold Meson Production in Hadronic Interactions
Studies of meson production at threshold in the hadron--hadron interaction
began in the fifties when sufficient energies of accelerated protons were
available. A strong interdependence between developments in accelerator
physics, detector performance and theoretical understanding led to a unique
vivid field of physics. Early experiments performed with bubble chambers
revealed already typical ingredients of threshold studies, which were
superseded by more complete meson production investigations at the nucleon beam
facilities TRIUMF, LAMPF, PSI, LEAR and SATURNE. Currently, with the advent of
the new cooler rings as IUCF, CELSIUS and COSY the field is entering a new
domain of precision and the next step of further progress.
The analysis of this new data in the short range limit permits a more
fundamental consideration and a quantitative comparison of the production
processes for different mesons in the few--body final states. The
interpretation of the data take advantage of the fact that production reactions
close-to-threshold are characterized by only a few degrees of freedom between a
well defined combination of initial and exit channels. Deviations from
predictions of phase-space controlled one-meson-exchange models are indications
of new and exciting physics. Precision data on differential cross sections,
isospin and spin observables -- partly but by no means adequately available --
are presently turning up on the horizon. There is work for the next years and
excitement of the physics expected. Here we try to give a brief and at the same
time comprehensive overview of this field of hadronic threshold production
studies.Comment: 100 pages, Review article to be published in Prog. Part. Nucl. Phys.
Vol. 49, issue 1 (2002
The Belle II Physics Book
We present the physics program of the Belle II experiment, located on the
intensity frontier SuperKEKB collider. Belle II collected its first
collisions in 2018, and is expected to operate for the next decade. It is
anticipated to collect 50/ab of collision data over its lifetime. This book is
the outcome of a joint effort of Belle II collaborators and theorists through
the Belle II theory interface platform (B2TiP), an effort that commenced in
2014. The aim of B2TiP was to elucidate the potential impacts of the Belle II
program, which includes a wide scope of physics topics: B physics, charm, tau,
quarkonium, electroweak precision measurements and dark sector searches. It is
composed of nine working groups (WGs), which are coordinated by teams of
theorist and experimentalists conveners: Semileptonic and leptonic B decays,
Radiative and Electroweak penguins, phi_1 and phi_2 (time-dependent CP
violation) measurements, phi_3 measurements, Charmless hadronic B decay, Charm,
Quarkonium(like), tau and low-multiplicity processes, new physics and global
fit analyses. This book highlights "golden- and silver-channels", i.e. those
that would have the highest potential impact in the field. Theorists
scrutinised the role of those measurements and estimated the respective
theoretical uncertainties, achievable now as well as prospects for the future.
Experimentalists investigated the expected improvements with the large dataset
expected from Belle II, taking into account improved performance from the
upgraded detector.Comment: 689 page
The Physics of the B Factories
This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C
High-throughput nanopore sequencing of Treponema pallidum tandem repeat genes arp and tp0470 reveals clade-specific patterns and recapitulates global whole genome phylogeny
Sequencing of most Treponema pallidum genomes excludes repeat regions in tp0470 and the tp0433 gene, encoding the acidic repeat protein (arp). As a first step to understanding the evolution and function of these genes and the proteins they encode, we developed a protocol to nanopore sequence tp0470 and arp genes from 212 clinical samples collected from ten countries on six continents. Both tp0470 and arp repeat structures recapitulate the whole genome phylogeny, with subclade-specific patterns emerging. The number of tp0470 repeats is on average appears to be higher in Nichols-like clade strains than in SS14-like clade strains. Consistent with previous studies, we found that 14-repeat arp sequences predominate across both major clades, but the combination and order of repeat type varies among subclades, with many arp sequence variants limited to a single subclade. Although strains that were closely related by whole genome sequencing frequently had the same arp repeat length, this was not always the case. Structural modeling of TP0470 suggested that the eight residue repeats form an extended α-helix, predicted to be periplasmic. Modeling of the ARP revealed a C-terminal sporulation-related repeat (SPOR) domain, predicted to bind denuded peptidoglycan, with repeat regions possibly incorporated into a highly charged ÎČ-sheet. Outside of the repeats, all TP0470 and ARP amino acid sequences were identical. Together, our data, along with functional considerations, suggests that both TP0470 and ARP proteins may be involved in T. pallidum cell envelope remodeling and homeostasis, with their highly plastic repeat regions playing as-yet-undetermined roles
- âŠ