65 research outputs found
Prevalence and Burden of Refractive Errors at National and Sub-national Levels in Iran
Purpose: To estimate the prevalence, burden of refractive errors and their associated trend from 1990 to 2018 and geographic inequalities in Iran.
Methods: Data regarding the epidemiology of refractive errors was extracted from three different sources: systematic review of published literature, data from visual school screening programs, and data from Iran’s national health survey (NHS). The pool of all available data on refractive errors as well as demographic, location, and socioeconomic status covariates were fitted in spatio-temporal and Gaussian process regression models to predict the prevalence of refractive errors from the years 1990 to 2018 in 31 provinces grouped by age and sex in order to calculate years lived with disability (YLDs).
Results: In 2018, the age-adjusted prevalence of refractive errors was 16.32% (95% uncertainty interval [UI]: 12.44–21.48%) in both sexes, 17.98% (95% UI: 13.74– 23.61%) in women, and 14.66% (95% UI: 11.14–19.36%) in men. The prevalence of refractive errors reveals that it increases with age. Refractive errors contributed to 441.41 and 348.38 YLDs in men and women, respectively. The age-standardized prevalence growth was 31.30% in females and 24.32% in males from the years 1990 to 2018. Significant geographical heterogeneity was observed. The age-standardized YLDs rates of refractive errors represent an increasing trend of 28.9% increase from 1990 to 2018.
Conclusion: Over 28 years, the prevalence of refractive errors increased significantly. Women tend to have higher rates of prevalence. The prevalence increased in older ages. Border provinces had the lowest prevalence. Age-standardized YLDs rates of refractive errors increased by about 30%
Serum Insulin-Like Growth Factor-1 in Parkinson's Disease; Study of Cerebrospinal Fluid Biomarkers and White Matter Microstructure
Background: Growing evidence shows that impaired signaling of Insulin-like Growth Factor-1 (IGF-1) is associated with neurodegenerative disorders, such as Parkinson's disease (PD). However, there is still controversy regarding its proinflammatory or neuroprotective function. In an attempt to elucidate the contribution of IGF-1 in PD, we aimed to discover the relation between serum IGF-1 levels in drug-naïve early PD patients and cerebrospinal fluid (CSF) biomarkers as well as microstructural changes in brain white matter.Methods: The association between quartiles of serum IGF-1 levels and CSF biomarkers (α-synuclein, dopamine, amyloid-β1−42, total tau, and phosphorylated tau) was investigated using adjusted regression models in 404 drug-naïve early PD patients with only mild motor manifestations and 188 age- and sex-matched healthy controls (HC) enrolled in the Parkinson's Progression Markers Initiative (PPMI). By using region of interest analysis and connectometry approach, we tracked the white matter microstructural integrity and diffusivity patterns in a subgroup of study participants with available diffusion MRI data to investigate the association between subcomponents of neural pathways with serum IGF-1 levels.Results: PD patients had higher levels of IGF-1 compared to HC, although not statistically significant (mean difference: 3.60, P = 0.44). However, after adjustment for possible confounders and correction for False Discovery Rate (FDR), IGF-1 was negatively correlated with CSF α-synuclein, total and phosphorylated tau levels only in PD subjects. The imaging analysis proved a significant negative correlation (FDR corrected P-value = 0.013) between continuous levels of serum IGF-1 in patients with PD and the connectivity, but not integrity, in following fibers while controlling for age, sex, body mass index, depressive symptoms, education years, cognitive status and disease duration: middle cerebellar peduncle, cingulum, genu and splenium of the corpus callosum. No significant association was found between brain white matter microstructral measures or CSF markers of healthy controls and levels of IGF-1.Conclusion: Altered connectivity in specific white matter structures, mainly involved in cognitive and motor deterioration, in association with higher serum IGF-1 levels might propose IGF-1 as a potential associate of worse outcome in response to higher burden of α-synucleinopathy and tauopathy in PD
Insight into blood pressure targets for universal coverage of hypertension services in Iran: the 2017 ACC/AHA versus JNC 8 hypertension guidelines
BACKGROUND: We compared the prevalence, awareness, treatment, and control of hypertension in Iran based on two hypertension guidelines; the 2017 ACC/AHA -with an aggressive blood pressure target of 130/80 mmHg- and the commonly used JNC8 guideline cut-off of 140/90 mmHg. We shed light on the implications of the 2017 ACC/AHA for population subgroups and high-risk individuals who were eligible for non-pharmacologic and pharmacologic therapies. METHODS: Data was obtained from the Iran national STEPS 2016 study. Participants included 27,738 adults aged ≥25 years as a representative sample of Iranians. Regression models of survey design were used to examine the determinants of prevalence, awareness, treatment, and control of hypertension. RESULTS: The prevalence of hypertension based on JNC8 was 29.9% (95% CI: 29.2-30.6), which soared to 53.7% (52.9-54.4) based on the 2017 ACC/AHA. The percentage of awareness, treatment, and control were 59.2% (58.0-60.3), 80.2% (78.9-81.4), and 39.1% (37.4-40.7) based on JNC8, which dropped to 37.1% (36.2-38.0), 71.3% (69.9-72.7), and 19.6% (18.3-21.0), respectively, by applying the 2017 ACC/AHA. Based on the new guideline, adults aged 25-34 years had the largest increase in prevalence (from 7.3 to 30.7%). They also had the lowest awareness and treatment rate, contrary to the highest control rate (36.5%) between age groups. Compared with JNC8, based on the 2017 ACC/AHA, 24, 15, 17, and 11% more individuals with dyslipidaemia, high triglycerides, diabetes, and cardiovascular disease events, respectively, fell into the hypertensive category. Yet, based on the 2017 ACC/AHA, 68.2% of individuals falling into the hypertensive category were eligible for receiving pharmacologic therapy (versus 95.7% in JNC8). LDL cholesterol< 130 mg/dL, sufficient physical activity (Metabolic Equivalents≥600/week), and Body Mass Index were found to change blood pressure by - 3.56(- 4.38, - 2.74), - 2.04(- 2.58, - 1.50), and 0.48(0.42, 0.53) mmHg, respectively. CONCLUSIONS: Switching from JNC8 to 2017 ACC/AHA sharply increased the prevalence and drastically decreased the awareness, treatment, and control in Iran. Based on the 2017 ACC/AHA, more young adults and those with chronic comorbidities fell into the hypertensive category; these individuals might benefit from earlier interventions such as lifestyle modifications. The low control rate among individuals receiving treatment warrants a critical review of hypertension services
Public health utility of cause of death data : applying empirical algorithms to improve data quality
Background: Accurate, comprehensive, cause-specific mortality estimates are crucial for informing public health decision making worldwide. Incorrectly or vaguely assigned deaths, defined as garbage-coded deaths, mask the true cause distribution. The Global Burden of Disease (GBD) study has developed methods to create comparable, timely, cause-specific mortality estimates; an impactful data processing method is the reallocation of garbage-coded deaths to a plausible underlying cause of death. We identify the pattern of garbage-coded deaths in the world and present the methods used to determine their redistribution to generate more plausible cause of death assignments. Methods: We describe the methods developed for the GBD 2019 study and subsequent iterations to redistribute garbage-coded deaths in vital registration data to plausible underlying causes. These methods include analysis of multiple cause data, negative correlation, impairment, and proportional redistribution. We classify garbage codes into classes according to the level of specificity of the reported cause of death (CoD) and capture trends in the global pattern of proportion of garbage-coded deaths, disaggregated by these classes, and the relationship between this proportion and the Socio-Demographic Index. We examine the relative importance of the top four garbage codes by age and sex and demonstrate the impact of redistribution on the annual GBD CoD rankings. Results: The proportion of least-specific (class 1 and 2) garbage-coded deaths ranged from 3.7% of all vital registration deaths to 67.3% in 2015, and the age-standardized proportion had an overall negative association with the Socio Demographic Index. When broken down by age and sex, the category for unspecified lower respiratory infections was responsible for nearly 30% of garbage-coded deaths in those under 1 year of age for both sexes, representing the largest proportion of garbage codes for that age group. We show how the cause distribution by number of deaths changes before and after redistribution for four countries: Brazil, the United States, Japan, and France, highlighting the necessity of accounting for garbage-coded deaths in the GBD
Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2.5 air pollution, 1990-2019 : an analysis of data from the Global Burden of Disease Study 2019
Background Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2.5 originating from ambient and household air pollution.Methods We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2.5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure-response curve from the extracted relative risk estimates using the MR-BRT (meta-regression-Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2.5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2.5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals.Findings In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2.5 exposure, with an estimated 3.78 (95% uncertainty interval 2.68-4.83) deaths per 100 000 population and 167 (117-223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13.4% (9.49-17.5) of deaths and 13.6% (9.73-17.9) of DALYs due to type 2 diabetes were contributed by ambient PM2.5, and 6.50% (4.22-9.53) of deaths and 5.92% (3.81-8.64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2.5.Interpretation Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2.5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe
Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2.5 air pollution, 1990-2019 : An analysis of data from the Global Burden of Disease Study 2019
Background
Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2·5 originating from ambient and household air pollution.
Methods
We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2·5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure–response curve from the extracted relative risk estimates using the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2·5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2·5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals.
Findings
In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2·5 exposure, with an estimated 3·78 (95% uncertainty interval 2·68–4·83) deaths per 100 000 population and 167 (117–223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13·4% (9·49–17·5) of deaths and 13·6% (9·73–17·9) of DALYs due to type 2 diabetes were contributed by ambient PM2·5, and 6·50% (4·22–9·53) of deaths and 5·92% (3·81–8·64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2·5.
Interpretation
Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2·5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes
Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17
Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation
Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable). Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Funding: Bill & Melinda Gates Foundation
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.
Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
- …