104 research outputs found

    Prenatal Air Pollution and Newborns' Predisposition to Accelerated Biological Aging.

    Get PDF
    Importance: Telomere length is a marker of biological aging that may provide a cellular memory of exposures to oxidative stress and inflammation. Telomere length at birth has been related to life expectancy. An association between prenatal air pollution exposure and telomere length at birth could provide new insights in the environmental influence on molecular longevity. Objective: To assess the association of prenatal exposure to particulate matter (PM) with newborn telomere length as reflected by cord blood and placental telomere length. Design, Setting, and Participants: In a prospective birth cohort (ENVIRONAGE [Environmental Influence on Ageing in Early Life]), a total of 730 mother-newborn pairs were recruited in Flanders, Belgium between February 2010 and December 2014, all with a singleton full-term birth (≥37 weeks of gestation). For statistical analysis, participants with full data on both cord blood and placental telomere lengths were included, resulting in a final study sample size of 641. Exposures: Maternal residential PM2.5 (particles with an aerodynamic diameter ≤2.5 μm) exposure during pregnancy. Main Outcomes and Measures: In the newborns, cord blood and placental tissue relative telomere length were measured. Maternal residential PM2.5 exposure during pregnancy was estimated using a high-resolution spatial-temporal interpolation method. In distributed lag models, both cord blood and placental telomere length were associated with average weekly exposures to PM2.5 during pregnancy, allowing the identification of critical sensitive exposure windows. Results: In 641 newborns, cord blood and placental telomere length were significantly and inversely associated with PM2.5 exposure during midgestation (weeks 12-25 for cord blood and weeks 15-27 for placenta). A 5-µg/m3 increment in PM2.5 exposure during the entire pregnancy was associated with 8.8% (95% CI, -14.1% to -3.1%) shorter cord blood leukocyte telomeres and 13.2% (95% CI, -19.3% to -6.7%) shorter placental telomere length. These associations were controlled for date of delivery, gestational age, maternal body mass index, maternal age, paternal age, newborn sex, newborn ethnicity, season of delivery, parity, maternal smoking status, maternal educational level, pregnancy complications, and ambient temperature. Conclusions and Relevance: Mothers who were exposed to higher levels of PM2.5 gave birth to newborns with shorter telomere length. The observed telomere loss in newborns by prenatal air pollution exposure indicates less buffer for postnatal influences of factors decreasing telomere length during life. Therefore, improvements in air quality may promote molecular longevity from birth onward

    Estrogen receptor mutations and splice variants determined in liquid biopsies from metastatic breast cancer patients

    Get PDF
    Mutations and splice variants in the estrogen receptor (ER) gene, ESR1, may yield endocrine resistance in metastatic breast cancer (MBC) patients. These putative endocrine resistance markers are likely to emerge during treatment, and therefore, its detection in liquid biopsies, such as circulating tumor cells (CTCs) and cell-free DNA (cfDNA), is of great interest. This research aimed to determine whether ESR1 mutations and splice variants occur more frequently in CTCs of MBC patients progressing on endocrine treatment. In addition, the presence of ESR1 mutations was evaluated in matched cfDNA and compared to CTCs. CellSearch-enriched CTC fractions (≥5/7.5 mL) of two MBC cohorts were evaluated, namely (a) patients starting first-line endocrine therapy (n = 43, baseline cohort) and (b) patients progressing on any line of endocrine therapy (n = 40, progressing cohort). ESR1 hotspot mutations (D538G and Y537S/N/C) were evaluated in CTC-enriched DNA using digital PCR and compared with matched cfDNA (n = 18 baseline cohort; n = 26 progressing cohort). Expression of ESR1 full-length and 4 of its splice variants ((increment)5, (increment)7, 36 kDa, and 46 kDa) was evaluated in CTC-enriched mRNA. It was observed that in the CTCs, the ESR1 mutations were not enriched in the progressing cohort (8%), when compared with the baseline cohort (5%) (P = 0.66). In the cfDNA, however, ESR1 mutations were more prevalent in the progressing cohort (42%) than in the baseline cohort (11%) (P = 0.04). Three of the same mutations were observed in both CTCs and cfDNA, 1 mutation in CTCs only, and 11 in cfDNA only. Only the (increment)5 ESR1 splice variant was CTC-specific expressed, but was not enriched in the progressing cohort. In conclusion, sensitivity for detecting ESR1 mutations in CTC-enriched fractions was lower than for cfDNA. ESR1 mutations detected in cfDNA, rarely present at the start of first-line endocrine therapy, were enriched at progression, strongly suggesting a role in conferring endocrine resistance in MBC

    Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons

    Get PDF
    Background: Current normalization methods for RNA-sequencing data allow either for intersample comparison to identify differentially expressed (DE) genes or for intrasample comparison for the discovery and validation of gene signatures. Most studies on optimization of normalization methods typically use simulated data to validate methodologies. We describe a new method, GeTMM, which allows for both inter- and intrasample analyses with the same normalized data set. We used actual (i.e. not simulated) RNA-seq data from 263 colon cancers (no biological replicates) and used the same read count data to compare GeTMM with the most commonly used normalization methods (i.e. TMM (used by edgeR), RLE (used by DESeq2) and TPM) with respect to distributions, effect of RNA quality, subtype-classification, recurrence score, recall of DE genes and correlation to RT-qPCR data. Results: We observed a clear benefit for GeTMM and TPM with regard to intrasample comparison while GeTMM performed similar to TMM and RLE normalized data in intersample comparisons. Regarding DE genes, recall was found comparable among the normalization methods, while GeTMM showed the lowest number of false-positive DE genes. Remarkably, we observed limited detrimental effects in samples with low RNA quality. Conclusions: We show that GeTMM outperforms established methods with regard to intrasample comparison while performing equivalent with regard to intersample normalization using the same normalized data. These combined properties enhance the general usefulness of RNA-seq but also the comparability to the many array-based gene expression data in the public domain

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Cholera Toxin Regulates a Signaling Pathway Critical for the Expansion of Neural Stem Cell Cultures from the Fetal and Adult Rodent Brains

    Get PDF
    Background: New mechanisms that regulate neural stem cell (NSC) expansion will contribute to improved assay systems and the emerging regenerative approach that targets endogenous stem cells. Expanding knowledge on the control of stem cell self renewal will also lead to new approaches for targeting the stem cell population of cancers. Methodology/Principal Findings: Here we show that Cholera toxin regulates two recently characterized NSC markers, the Tie2 receptor and the transcription factor Hes3, and promotes the expansion of NSCs in culture. Cholera toxin increases immunoreactivity for the Tie2 receptor and rapidly induces the nuclear localization of Hes3. This is followed by powerful cultured NSC expansion and induction of proliferation both in the presence and absence of mitogen. Conclusions/Significance: Our data suggest a new cell biological mechanism that regulates the self renewal and differentiation properties of stem cells, providing a new logic to manipulate NSCs in the context of regenerative disease and cancer

    Confirmation of a metastasis-specific microRNA signature in primary colon cancer

    Get PDF
    The identification of patients with high-risk stage II colon cancer who may benefit from adjuvant therapy may allow the clinical approach to be tailored for these patients based on an understanding of tumour biology. MicroRNAs have been proposed as markers of the prognosis or treatment response in colorectal cancer. Recently, a 2-microRNA signature (l et-7i and miR-10b) was proposed to identify colorectal cancer patients at risk of developing distant metastasis. We assessed the prognostic value of this signature and additional candidate microRNAs in an independent, clinically well-defined, prospectively collected cohort of primary colon cancer patients including stage I-II colon cancer without and stage III colon cancer with adjuvant treatment. The 2-microRNA signature specifically predicted hepatic recurrence in the stage I-II group, but not the overall ability to develop distant metastasis. The addition of miR-30b to the 2-microRNA signature allowed the prediction of both distant metastasis and hepatic recurrence in patients with stage I-II colon cancer who did not receive adjuvant chemotherapy. Available gene expression data allowed us to associate m iR-30b expression with axon guidance and l et-7i expression with cell adhesion, migration, and motility

    Circulating tumor cell enumeration and characterization in metastatic castration-resistant prostate cancer patients treated with cabazitaxel

    Get PDF
    (1) Background: Markers identifying which patients with metastatic, castration-resistant prostate cancer (mCRPC) will benefit from cabazitaxel therapy are currently lacking. Therefore, the aim of this study was to identify markers associated with outcome to cabazitaxel therapy based on counts and gene expression profiles of circulating tumor cells (CTCs). (2) Methods: From 120 mCRPC patients, CellSearch enriched CTCs were obtained at baseline and after 6 weeks of cabazitaxel therapy. Furthermore, 91 genes associated with prostate cancer were measured in mRNA of these CTCs. (3) Results: In 114 mCRPC patients with an evaluable CTC count, the CTC count was independently associated with poor progression-free survival (PFS) and overall survival (OS) in multivariable analysis with other commonly used variables associated with outcome in mCRPC (age, prostate specific antigen (PSA), alkaline phosphatase, lactate dehydrogenase (LDH), albumin, hemoglobin), together with alkaline phosphatase and hemoglobin. A five-gene expression profile was generated to predict for outcome to cabazitaxel therapy. However, even though this signature was associated with OS in univariate analysis, this was not the case in the multivariate analysis for OS nor for PFS. (4) Conclusion: The established five-gene expression profile in CTCs was not independently associated with PFS nor OS. However, along with alkaline phosphatase and hemoglobin, CTC-count is independently associated with PFS and OS in mCRPC patients who are treated with cabazitaxel

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
    corecore