269 research outputs found

    Characterization of the bHLH family of transcriptional regulators in the acoel S. roscofensis and their putative role in neurogenesis

    Get PDF
    Background: The basic helix-loop-helix (bHLH) family of transcription factors is one of the largest superfamilies of regulatory transcription factors and is widely used in eukaryotic organisms. They play an essential role in a range of metabolic, physiological, and developmental processes, including the development of the nervous system (NS). These transcription factors have been studied in many metazoans, especially in vertebrates but also in early branching metazoan clades such as the cnidarians and sponges. However, currently very little is known about their expression in the most basally branching bilaterian group, the xenacoelomorphs. Recently, our laboratory has characterized the full complement of bHLH in the genome of two members of the Xenacoelomorpha, the xenoturbellid Xenoturbella bocki and the acoel Symsagittifera roscoffensis. Understanding the patterns of bHLH gene expression in members of this phylum (in space and time) provides critical new insights into the conserved roles of the bHLH and their putative specificities in this group. Our focus is on deciphering the specific roles that these genes have in the process of neurogenesis. Results: Here, we analyze the developmental expression of the whole complement of bHLH genes identified in the acoel S. roscoffensis. Based on their expression patterns, several members of bHLH class A appear to have specific conserved roles in neurogenesis, while other class A genes (as well as members of other classes) have likely taken on more generalized functions. All gene expression patterns are described in embryos and early juveniles. Conclusion: Our results suggest that the main roles of the bHLH genes of S. roscoffensis are evolutionarily conserved, with a specific subset dedicated to patterning the nervous system: SrAscA, SrAscB, SrHes/Hey, SrNscl, SrSrebp, SrE12/ E47 and SrOlig

    On the formation of gold nanoparticles from [AuIIICl4]- and a non-classical reduced polyoxomolybdate as an electron source: A quantum mechanical modelling and experimental study

    Get PDF
    Polyoxometalate (POM)-mediated reduction and nucleation mechanisms in nanoparticle (NP) syntheses are still largely unknown. We carried out comprehensive theoretical analysis using density functional theory (DFT) to gain insight into the molecular and electronic changes that occur during the reduction of HAuIIICl4 with the Kabanos-type polyoxomolybdate, Na{(MoV2O4)3(µ2-O)3(µ2-SO3)3(µ6-SO3)}2]15-. In the system presented herein the electrons are supplied by the POM, making the computational thermodynamic analysis more feasible. Our results reveal that this particular POM is a multi-electron source and the proton-coupled electron transfer (PCET) greatly promotes the reduction process. Based on the energy and molecular orbital studies of the intermediate species the reduction of AuIII to AuI is shown to be thermodynamically favourable, and a low HOMO-LUMO gap of the POM-Au superstructure is advantageous for electron transfer. By modelling the reduction of three couples of AuIII ¿ AuI by the same POM unit, it is proposed that the reduced polyoxomolybdate is finally fully oxidised. The subjacent idea of using the Kabanos POM was confirmed by comprehensive experimental characterisation of POM-stabilised gold nanoparticles (AuNPs@POM). Present theoretical analysis suggests that protons have a significant influence on the final AuI to Au0 reduction step that ultimately leads to colloidal AuNPs@POM

    Influence of Cation Substitution on Cycling Stability and Fe-Cation Migration in Li3Fe3–xMxTe2O12 (M = Al, In) Cathode Materials

    Get PDF
    Li3Fe3Te2O12 adopts a crystal structure, described in space group Pnnm, related to that of LiSbO3, in which Te6+, Fe3+, and Li+ cations reside in a partially ordered configuration within an hcp array of oxide ions. Chemical or electrochemical insertion of lithium is accompanied by a fully reversible migration of some of the Fe cations with an initial capacity of 120 mA h g-1 (2.85 Li per formula unit). Long-term cycling stability is limited by the facile reduction of Te6+ to elemental Te, which leads to cathode decomposition. Partial substitution of Fe by In suppresses Te6+ reduction, such that Li3Fe2InTe2O12 shows no sign of this cathode decomposition pathway, even after 100 cycles. In contrast, Al-for-Fe substitution is chemically limited to Li3Fe2.6Al0.4Te2O12 and appears to have almost no influence on cathode longevity. These features of the Li3Fe3-xMxTe2O12 system are discussed on the basis of a detailed structural analysis performed using neutron and synchrotron X-ray diffraction

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics

    Get PDF
    Heteroplasmy, multiple variants of mitochondrial DNA (mtDNA) in the same cytoplasm, may be naturally generated by mutations but is counteracted by a genetic mtDNA bottleneck during oocyte development. Engineered heteroplasmic mice with nonpathological mtDNA variants reveal a nonrandom tissue-specific mtDNA segregation pattern, with few tissues that do not show segregation. The driving force for this dynamic complex pattern has remained unexplained for decades, challenging our understanding of this fundamental biological problem and hindering clinical planning for inherited diseases. Here, we demonstrate that the nonrandom mtDNA segregation is an intracellular process based on organelle selection. This cell type-specific decision arises jointly from the impact of mtDNA haplotypes on the oxidative phosphorylation (OXPHOS) system and the cell metabolic requirements and is strongly sensitive to the nuclear context and to environmental cues

    Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing Salustiana sweet orange (Citrus sinensis L.)

    Full text link
    [EN] The aim of this work was to assess the relation between carbohydrate levels and flower and fruit production, as well as the role of carbohydrates on CO(2) fixation activity, by analysis of leaves, twigs and roots from the alternate bearing 'Salustiana' cultivar of sweet orange (Citrus sinensis [L.] Osbeck). A heavy crop load (on year) did not affect photosynthesis activity when compared to non-fruiting trees (off year). Fruiting trees accumulated most of the fixed carbon in mature fruits, whilst no accumulation was observed in roots before harvest. Non-fruiting trees transported part of the fixed carbon to the roots and mobilize it for growth processes and, at the end of the season (December), store it as reserves. Reserve carbohydrates accumulation in leaves started by early December for both tree types, showing the same levels in on and off trees until spring bud sprouting. A heavy flowering after an off year caused the rapid mobilization of the stored reserves, which were exhausted at full bloom. We found no evidence on carbon fixation regulation by either fruit demand or carbohydrate levels in leaves. Carbohydrate reserves played little or no role over fruit set, which actually relied on current photosynthesisWe thank Ing. Agr. J.M. Torres (ANECOOP, Valencia, Spain) for providing the orchard facilities and logistic help, the R + D + i Linguistic Assistance Office at the Universidad Politecnica de Valencia for their help in revising this article and Y. Bordon for her cooperation in some experiments. Thanks are due also to Dr. Olivares for the critical review of the manuscript. This research was funded by grants from the Conselleria de Agricultura, Pesca y Alimentacion (GV-CAPA00-11) and the Conselleria diEmpresa, Universitat i Ciencia, Generalitat Valenciana (Grupos 04/059).Monerri Huguet, MC.; Fortunato De Almeida, A.; Molina Romero, RV.; González Nebauer, S.; García Luís, MD.; Guardiola Barcena, JL. (2011). Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing Salustiana sweet orange (Citrus sinensis L.). Scientia Horticulturae. 129(1):71-78. https://doi.org/10.1016/j.scienta.2011.03.009S7178129

    From thermal rectifiers to thermoelectric devices

    Full text link
    We discuss thermal rectification and thermoelectric energy conversion from the perspective of nonequilibrium statistical mechanics and dynamical systems theory. After preliminary considerations on the dynamical foundations of the phenomenological Fourier law in classical and quantum mechanics, we illustrate ways to control the phononic heat flow and design thermal diodes. Finally, we consider the coupled transport of heat and charge and discuss several general mechanisms for optimizing the figure of merit of thermoelectric efficiency.Comment: 42 pages, 22 figures, review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore