8 research outputs found

    Selective Uncoupling of Individual Mitochondria within a Cell Using a Mitochondria-Targeted Photoactivated Protonophore

    Get PDF
    Depolarization of an individual mitochondrion or small clusters of mitochondria within cells has been achieved using a photoactivatable probe. The probe is targeted to the matrix of the mitochondrion by an alkyltriphenylphosphonium lipophilic cation and releases the protonophore 2,4-dinitrophenol locally in predetermined regions in response to directed irradiation with UV light via a local photolysis system. This also provides a proof of principle for the general temporally and spatially controlled release of bioactive molecules, pharmacophores, or toxins to mitochondria with tissue, cell, or mitochondrion specificity

    Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury.

    No full text
    Cyclosporin A (CsA) inhibits the opening of the mitochondrial permeability transition pore (MPTP) by interacting with cyclophilin D (CypD) and ameliorates neuronal cell death in the central nervous system against ischemic injury. However, the molecular mechanisms underlying CypD/MPTP opening-mediated cell death in ischemic retinal injury induced by acute intraocular pressure (IOP) elevation remain unknown. We observed the first direct evidence that acute IOP elevation significantly upregulated CypD protein expression in ischemic retina at 12 h. However, CsA prevented the upregulation of CypD protein expression and promoted retinal ganglion cell (RGC) survival against ischemic injury. Moreover, CsA blocked apoptotic cell death by decreasing cleaved caspase-3 protein expression in ischemic retina. Of interest, although the expression level of Bcl-xL protein did not show a significant change in ischemic retina treated with vehicle or CsA at 12 h, ischemic damage induced the reduction of Bcl-xL immunoreactivity in RGCs. More importantly, CsA preserved Bcl-xL immunoreactivity in RGCs of ischemic retina. In parallel, acute IOP elevation significantly increased phosphorylated Bad (pBad) at Ser112 protein expression in ischemic retina at 12 h. However, CsA significantly preserved pBad protein expression in ischemic retina. Finally, acute IOP elevation significantly increased mitochondrial transcription factor A (Tfam) protein expression in ischemic retina at 12 h. However, CsA significantly preserved Tfam protein expression in ischemic retina. Studies on mitochondrial DNA (mtDNA) content in ischemic retina showed that there were no statistically significant differences in mtDNA content among control and ischemic groups treated with vehicle or CsA. Therefore, these results provide evidence that the activation of CypD-mediated MPTP opening is associated with the apoptotic pathway and the mitochondrial alteration in RGC death of ischemic retinal injury. On the basis of these observations, our findings suggest that CsA-mediated CypD inhibition may provide a promising therapeutic potential for protecting RGCs against ischemic injury-mediated mitochondrial dysfunction

    Molecular Vehicles for Mitochondrial Chemical Biology and Drug Delivery

    No full text

    Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins

    No full text

    Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases

    No full text
    Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS–mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice
    corecore