354 research outputs found

    New constructions of WOM codes using the Wozencraft ensemble

    Get PDF
    In this paper we give several new constructions of WOM codes. The novelty in our constructions is the use of the so called Wozencraft ensemble of linear codes. Specifically, we obtain the following results. We give an explicit construction of a two-write Write-Once-Memory (WOM for short) code that approaches capacity, over the binary alphabet. More formally, for every \epsilon>0, 0<p<1 and n =(1/\epsilon)^{O(1/p\epsilon)} we give a construction of a two-write WOM code of length n and capacity H(p)+1-p-\epsilon. Since the capacity of a two-write WOM code is max_p (H(p)+1-p), we get a code that is \epsilon-close to capacity. Furthermore, encoding and decoding can be done in time O(n^2.poly(log n)) and time O(n.poly(log n)), respectively, and in logarithmic space. We obtain a new encoding scheme for 3-write WOM codes over the binary alphabet. Our scheme achieves rate 1.809-\epsilon, when the block length is exp(1/\epsilon). This gives a better rate than what could be achieved using previous techniques. We highlight a connection to linear seeded extractors for bit-fixing sources. In particular we show that obtaining such an extractor with seed length O(log n) can lead to improved parameters for 2-write WOM codes. We then give an application of existing constructions of extractors to the problem of designing encoding schemes for memory with defects.Comment: 19 page

    Arithmetic Circuit Lower Bounds via MaxRank

    Full text link
    We introduce the polynomial coefficient matrix and identify maximum rank of this matrix under variable substitution as a complexity measure for multivariate polynomials. We use our techniques to prove super-polynomial lower bounds against several classes of non-multilinear arithmetic circuits. In particular, we obtain the following results : As our main result, we prove that any homogeneous depth-3 circuit for computing the product of dd matrices of dimension n×nn \times n requires Ω(nd1/2d)\Omega(n^{d-1}/2^d) size. This improves the lower bounds by Nisan and Wigderson(1995) when d=ω(1)d=\omega(1). There is an explicit polynomial on nn variables and degree at most n2\frac{n}{2} for which any depth-3 circuit CC of product dimension at most n10\frac{n}{10} (dimension of the space of affine forms feeding into each product gate) requires size 2Ω(n)2^{\Omega(n)}. This generalizes the lower bounds against diagonal circuits proved by Saxena(2007). Diagonal circuits are of product dimension 1. We prove a nΩ(logn)n^{\Omega(\log n)} lower bound on the size of product-sparse formulas. By definition, any multilinear formula is a product-sparse formula. Thus, our result extends the known super-polynomial lower bounds on the size of multilinear formulas by Raz(2006). We prove a 2Ω(n)2^{\Omega(n)} lower bound on the size of partitioned arithmetic branching programs. This result extends the known exponential lower bound on the size of ordered arithmetic branching programs given by Jansen(2008).Comment: 22 page
    corecore