231 research outputs found

    Copper chaperone Atox1 plays role in breast cancer cell migration

    Get PDF
    Copper (Cu) is an essential transition metal ion required as cofactor in many key enzymes. After cell uptake of Cu, the metal is transported by the cytoplasmic Cu chaperone Atox1 to P1B-type ATPases in the Golgi network for incorporation into Cu-dependent enzymes in the secretory path. Cu is vital for many steps of cancer progression and Atox1 was recently suggested to have additional functionality as a nuclear transcription factor. We here investigated the expression level, cellular localization and role in cell migration of Atox1 in an aggressive breast cancer cell line upon combining immunostaining, microscopy and a wound healing assay. We made the unexpected discovery that Atox1 accumulates at lamellipodia borders of migrating cancer cells and Atox1 silencing resulted in migration defects as evidenced from reduced wound closure. Therefore, we have discovered an unknown role of the Cu chaperone Atox1 in breast cancer cell migration

    (E)-1-(2,4,6-Trimeth­oxy­phen­yl)pent-1-en-3-one

    Get PDF
    The title compound, C14H18O4, was obtained unintentionally as the major product of an attempted synthesis of (E,E)-2,5-bis­[2-(2,4,6-trimeth­oxy­phen­yl)ethen­yl]pyrazine. The crystal packing features layers based on two weak C—H⋯O hydrogen bonds involving the O atom of the carbonyl group and two Ometh­oxy⋯Cmeth­oxy inter­actions [3.109 (2) Å]. The sheets are inter­connected via meth­oxy–meth­oxy dimers and C—H⋯π inter­actions

    Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration

    Get PDF
    Copper ions are needed for several hallmarks of cancer. However, the involved pathways, mechanisms, and copper-binding proteins are mostly unknown. We recently found that cytoplasmic Antioxidant 1 copper chaperone (Atox1), which is up-regulated in breast cancer, is localized at the lamellipodia edges of aggressive breast cancer cells. To reveal molecular insights into a putative role in cell migration, we here investigated breast cancer cell (MDA-MB-231) migration by video microscopy as a function of Atox1. Tracking of hundreds of individual cells (per condition) over a 9-h time series revealed that cell migration velocity and directionality are significantly reduced upon Atox1 silencing in the cells. Because silencing of the copper transporter ATP7A also reduced cell migration, these proteins appear to be on the same pathway, suggesting that their well-known copper transport activity is involved. In-cell proximity ligation assays demonstrated that Atox1, ATP7A, and the proenzyme of lysyl oxidase (LOX; copper-loaded via ATP7A) are all in close proximity and that LOX activity is reduced upon Atox1 silencing in the cells. Since LOX is an established player in cancer cell migration, our results imply that Atox1 mediates breast cancer cell migration via coordinated copper transport in the ATP7A-LOX axis. Because individual cell migration is an early step in breast cancer metastasis, Atox1 levels in tumor cells may be a predictive measure of metastasis potential and serve as a biomarker for copper depletion therapy

    An Overview of Self-Consistent Field Calculations Within Finite Basis Sets

    Get PDF
    A uniform derivation of the self-consistent field equations in a finite basis set is presented. Both restricted and unrestricted Hartree–Fock (HF) theory as well as various density functional approximations are considered. The unitary invariance of the HF and density functional models is discussed, paving the way for the use of localized molecular orbitals. The self-consistent field equations are derived in a non-orthogonal basis set, and their solution is discussed also in the presence of linear dependencies in the basis. It is argued why iterative diagonalization of the Kohn–Sham–Fock matrix leads to the minimization of the total energy. Alternative methods for the solution of the self-consistent field equations via direct minimization as well as stability analysis are briefly discussed. Explicit expressions are given for the contributions to the Kohn–Sham–Fock matrix up to meta-GGA functionals. Range-separated hybrids and non-local correlation functionals are summarily reviewed

    4-[(E)-2-(2,4,6-Trinitro­phenyl)ethyl­idene]benzonitrile

    Get PDF
    In the crystal of the title compound, C15H8N4O6, the mol­ecules are organized in layers due to their linkage by weak C—H⋯N hydrogen bonds. The layers are themselves inter­connected by weak C—H⋯O hydrogen bonds and π–π inter­actions [centroid–centroid distances = 3.8690 (15) and 3.9017 (16) Å]. The dihedral angle between the rings is 31.9 (1)°

    Evaluation of copper chaperone ATOX1 as prognostic biomarker in breast cancer

    Get PDF
    Copper is involved in different hallmarks of cancer, including metastasis, but responsible copper-binding proteins and pathways are not clear. The copper chaperone ATOX1 was recently shown to play a role in breast cancer cell migration, which is a key step in metastasis. Since most cancer-related deaths are due to metastasis, we hypothesized that ATOX1 mRNA expression may be associated with breast cancer disease progression and thus, a prognostic biomarker in breast cancer. We therefore studied the association of ATOX1 expression levels with clinicopathological parameters and survival for 1904 breast cancer patients using the METABRIC data set. Our results indicate ATOX1 expression levels as a potential prognostic biomarker for ER-positive subtypes and early stages of breast cancer. Pre-clinical studies and clinical trials are desired to identify the molecular roles of ATOX1 in these conditions

    2-(4-Formyl-2,6-dimeth­oxy­phenoxy)­acetic acid

    Get PDF
    In the title compound, C11H12O6, the aldehyde group is disordered over two sites in a 0.79:0.21 ratio. The carb­oxy­lic acid chain is found in the [ap,ap] conformation due to two intramolecular O—H⋯O hydrogen bonds

    The Caenorhabditis elegans homolog of human copper chaperone Atox1, CUC-1, aids in distal tip cell migration

    Get PDF
    Cell migration is a fundamental biological process involved in for example embryonic development, immune system and wound healing. Cell migration is also a key step in cancer metastasis and the human copper chaperone Atox1 was recently found to facilitate this process in breast cancer cells. To explore the role of the copper chaperone in other cell migration processes, we here investigated the putative involvement of an Atox1 homolog in Caenorhabditis elegans, CUC-1, in distal tip cell migration, which is a key process during the development of the C. elegans gonad. Using knock-out worms, in which the cuc-1 gene was removed by CRISPR-Cas9 technology, we probed life span, brood size, as well as distal tip cell migration in the absence or presence of supplemented copper. Upon scoring of gonads, we found that cuc-1 knock-out, but not wild-type, worms exhibited distal tip cell migration defects in approximately 10–15% of animals and, had a significantly reduced brood size. Importantly, the distal tip cell migration defect was rescued by a wild-type cuc-1 transgene provided to cuc-1 knock-out worms. The results obtained here for C. elegans CUC-1 imply that Atox1 homologs, in addition to their well-known cytoplasmic copper transport, may contribute to developmental cell migration processes

    Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    Get PDF
    We show in the present study that the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal are biogenic volatile organic compound (BVOC) precursors for polar organosulfates with molecular weights (MWs) 230 and 214, which are also present in ambient fine aerosol from a forested site, i.e., K-puszta, Hungary. These results complement those obtained in a previous study showing that the green leaf aldehyde 3-Z-hexenal serves as a precursor for MW 226 organosulfates. Thus, in addition to isoprene, the green leaf volatiles (GLVs) 2-E-hexenal and 3-Z-hexenal, emitted due to plant stress (mechanical wounding or insect attack), and 2-E-pentenal, a photolysis product of 3-Z-hexenal, should be taken into account for secondary organic aerosol and organosulfate formation. Polar organosulfates are of climatic relevance because of their hydrophilic properties and cloud effects. Extensive use was made of organic mass spectrometry (MS) and detailed interpretation of MS data (i.e., ion trap MS and accurate mass measurements) to elucidate the chemical structures of the MW 230, 214 and 170 organosulfates formed from 2-E-pentenal and indirectly from 2-E-hexenal and 3-Z-hexenal. In addition, quantum chemical calculations were performed to explain the different mass spectral behavior of 2,3-dihydroxypentanoic acid sulfate derivatives, where only the isomer with the sulfate group at C-3 results in the loss of SO3. The MW 214 organosulfates formed from 2-E-pentenal are explained by epoxidation of the double bond in the gas phase and sulfation of the epoxy group with sulfuric acid in the particle phase through the same pathway as that proposed for 3-sulfooxy-2-hydroxy-2-methylpropanoic acid from the isoprene-related alpha,beta-unsaturated aldehyde methacrolein in previous work (Lin et al., 2013). The MW 230 organosulfates formed from 2-E-pentenal are tentatively explained by a novel pathway, which bears features of the latter pathway but introduces an additional hydroxyl group at the C-4 position. Evidence is also presented that the MW 214 positional isomer, 2-sulfooxy-3-hydroxypentanoic acid, is unstable and decarboxylates, giving rise to 1-sulfooxy-2-hydroxybutane, a MW 170 organosulfate. Furthermore, evidence is obtained that lactic acid sulfate is generated from 2-E-pentenal. This chemistry could be important on a regional and local scale where GLV emissions such as from grasses and cereal crops are substantial
    corecore