211 research outputs found

    Detecting the Most Distant (z>7) Objects with ALMA

    Get PDF
    Detecting and studying objects at the highest redshifts, out to the end of Cosmic Reionization at z>7, is clearly a key science goal of ALMA. ALMA will in principle be able to detect objects in this redshift range both from high-J (J>7) CO transitions and emission from ionized carbon, [CII], which is one of the main cooling lines of the ISM. ALMA will even be able to resolve this emission for individual targets, which will be one of the few ways to determine dynamical masses for systems in the Epoch of Reionization. We discuss some of the current problems regarding the detection and characterization of objects at high redshifts and how ALMA will eliminate most (but not all) of them.Comment: to appear in Astrophysics and Space Science, "Science with ALMA: a new era for Astrophysics", ed. R. Bachille

    The effect of active galactic nuclei on the cold interstellar medium in distant star-forming galaxies

    Get PDF
    In the framework of a systematic study with the ALMA interferometer of IR-selected main-sequence and starburst galaxies at z ∌ 1 − 1.7 at typical ∌1″ resolution, we report on the effects of mid-IR- and X-ray-detected active galactic nuclei (AGN) on the reservoirs and excitation of molecular gas in a sample of 55 objects. We find widespread detectable nuclear activity in ∌30% of the sample. The presence of dusty tori influences the IR spectral energy distribution of galaxies, as highlighted by the strong correlation among the AGN contribution to the total IR luminosity budget (fAGN = LIR,  AGN/LIR), its hard X-ray emission, and the Rayleigh-Jeans to mid-IR (S1.2 mm/S24 Όm) observed color, with evident consequences on the ensuing empirical star formation rate estimates. Nevertheless, we find only marginal effects of the presence and strength of AGN on the carbon monoxide CO (J = 2, 4, 5, 7) or neutral carbon ([C I](3P1  −  3P0), [C I](3P2  −  3P1)) line luminosities and on the derived molecular gas excitation as gauged by line ratios and the full spectral line energy distributions. The [C I] and CO emission up to J = 5, 7 thus primarily traces the properties of the host in typical IR luminous galaxies. However, our analysis highlights the existence of a large variety of line luminosities and ratios despite the homogeneous selection. In particular, we find a sparse group of AGN-dominated sources with the highest LIR,  AGN/LIR,  SFR ratios, ≳3, that are more luminous in CO (5−4) than what is predicted by the Lâ€ČCO(5-4)−LIR, SFR relation, which might be the result of the nuclear activity. For the general population, our findings translate into AGN having minimal effects on quantities such as gas and dust fractions and star formation efficiencies. If anything, we find hints of a marginal tendency of AGN hosts to be compact at far-IR wavelengths and to display 1.8 times larger dust optical depths. In general, this is consistent with a marginal impact of the nuclear activity on the gas reservoirs and star formation in average star-forming AGN hosts with LIR > 5 × 1011 L⊙, typically underrepresented in surveys of quasars and submillimeter galaxies

    Optical Constants of Ices Important to Planetary Science From Laboratory Reflectance Spectroscopy

    Get PDF
    Laboratory-derived optical constants are essential for identifying ices and measuring their relative abundances on Solar System objects. Almost all optical constants of ices important to planetary science come from experiments with transmission geometries. Here, we describe our new experimental setup and the modification of an iterative algorithm in the literature to measure the optical constants of ices from experiments with reflectance geometries. We apply our techniques to CH4 ice and H2O ice samples and find good agreement between our values and those in the literature, except for one CH4 band in the literature that likely suffers from saturation. The work we present here demonstrates that labs with reflectance geometries can generate optical constants essential for the proper analysis of near- and mid-infrared spectra of outer Solar System objects such as those obtained with the James Webb Space Telescope

    Optical Constants of Ices Important to Planetary Science From Laboratory Reflectance Spectroscopy

    Get PDF
    Laboratory-derived optical constants are essential for identifying ices and measuring their relative abundances on Solar System objects. Almost all optical constants of ices important to planetary science come from experiments with transmission geometries. Here, we describe our new experimental setup and the modification of an iterative algorithm in the literature to measure the optical constants of ices from experiments with reflectance geometries. We apply our techniques to CH4 ice and H2O ice samples and find good agreement between our values and those in the literature, except for one CH4 band in the literature that likely suffers from saturation. The work we present here demonstrates that labs with reflectance geometries can generate optical constants essential for the proper analysis of near- and mid-infrared spectra of outer Solar System objects such as those obtained with the James Webb Space Telescope

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
    • 

    corecore