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ABSTRACT12

Laboratory-derived optical constants are essential for identifying ices and measuring their relative13

abundances on Solar System objects. Almost all optical constants of ices important to planetary14

science come from experiments with transmission geometries. Here, we describe our new experimental15

setup and the modification of an iterative algorithm in the literature to measure the optical constants16

of ices from experiments with reflectance geometries. We apply our techniques to CH4 ice and H2O17

ice samples and find good agreement between our values and those in the literature, except for one18

CH4 band in the literature that likely suffers from saturation. The work we present here demonstrates19

that labs with reflectance geometries can generate optical constants essential for the proper analysis20

of near- and mid-infrared spectra of outer Solar System objects such as those obtained with the James21

Webb Space Telescope.22

1. INTRODUCTION23

Optical constants are essential for identifying and measuring the abundances of molecular ices on the surfaces of Solar24

System objects. Specifically, they are necessary inputs for radiative transfer models that generate synthetic spectra25

(Hapke 1993; Shkuratov et al. 1999). Comparison of these synthetic spectra to telescope or spacecraft spectra results26

in the identification and abundance measurements of ices on Solar System bodies. For examples, see Cruikshank et al.27

(1998); Dumas et al. (2007); Merlin et al. (2010); Tegler et al. (2012); Grundy et al. (2020).28

Laboratory techniques to measure the optical constants of molecular ices date back decades. One of the earliest29

experiments of importance to planetary science was by Bergren et al. (1978),where they established the experimental30

and iterative computational techniques of extracting optical constants from a single infrared transmission spectrum of31

a thin-film sample. Subsequent experiments to measure optical constants of importance to planetary science include32

works by Hagen et al. (1981), Hudgins et al. (1993), Hansen (1997), and Mastrapa et al. (2008, 2009).33

Recently, Gerakines & Hudson (2020) made significant computational improvements to the technique first put forward34

by Bergren et al. (1978) and Hagen et al. (1981). In addition, they made the point that the literature sometimes35

exhibits large differences in optical constants for the same material, which may be due to either subtleties in the36

experimental techniques or differences in the algorithms to extract the optical constants. They further point out37

that it is impossible to sort out the causes for the differences because few published results provide digital access to38

the original laboratory data, the algorithm to extract the optical constants from the data, and the resulting optical39
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constants. Gerakines and Hudson made their experimental data, algorithm, and resulting optical constants for dozens40

of ices available on their website1 and Zenodo 2.41

It is possible to obtain optical constants of thin films from transmission or reflectance geometries (Tolstoy et al. 2003).42

In transmission geometry, a vapor deposits as ice onto a cold transparent substrate. The spectrometer beam, nearly43

normal to the surface of the sample, passes through the ice, then the substrate, and then often through a thinner layer44

of ice on the back side of the substrate on its way to the detector. In reflectance geometry, a vapor deposits ice onto45

a highly reflective surface such as gold. The spectrometer beam is likely at an oblique angle to the surface of the ice46

sample. Part of the beam reflects off the surface of the ice back to the detector. The rest of the beam passes through47

the sample, reflects off the substrate, passes through the sample again, and finally travels onto the detector. The two48

parts of the beam recombine (out of phase) and create channel fringes in the spectrum. Previous optical constant49

work mostly uses transmission spectroscopy as the mathematics to extract optical constants from transmission spectra50

is simpler than the mathematics to extract optical constants from reflectance spectra. For instance, in reflectance51

geometry the spectrometer beam typically is not perpendicular to the ice surface, making it necessary to account for52

the S and P polarization states and work with more intricate Fresnel coefficients.53

Although extraction of optical constants is mathematically intricate for reflection spectroscopy, it has advantages.54

First, we don’t have to account for ice on the backside of the substrate as is necessary for transmission geometry.55

Second, it’s possible to irradiate ices with electrons or ions in reflectance geometry and study the resulting solid-state56

chemistry. Irradiation of transparent substrates may result in electrostatic charging and changes in the substrate57

properties (Clark & Crawford 1973; Teolis et al. 2007). Third, it is possible to use a quartz-crystal micro-balance58

(QCM) as the substrate in reflectance geometry and obtain information about the density of the ice (Westley et al.59

1998; Loeffler et al. 2006) and its vapor pressure (Hudson et al. 2022; Grundy et al. 2023). Because of these advantages,60

we decided to modify the algorithm by Gerakines & Hudson (2020) for transmission geometry to work in reflection61

geometry.62

Below, we describe our experimental setup and algorithm to measure the optical constants of ices in reflectance63

geometry, applying the algorithm to two ices of importance to planetary science, CH4 and H2O.64

2. EXPERIMENTAL SETUP65

We performed experiments in the Astrophysical Materials Laboratory at Northern Arizona University. We pumped66

on our vacuum chamber with an Agilent TwisTorr 305 FS turbomolecular pump backed up by an Agilent Varian67

DS302 dual-stage rotary vane roughing pump. The base pressure in the chamber at room temperature was typically68

1 to 2 x 10−8 torr. Cryocooling allowed us to reach pressures as low as 2 x 10−9 torr. We used an Agilent variable69

leak valve (model number 951-5106) to transfer samples from the reservoir to the vacuum chamber. We background70

deposited samples onto the substrate, while monitoring the pressure (∼ 10−6 torr) with an INFICON Bayard-Alpert71

Pirani combination gauge sensor (model number BPG-400).72

We deposited our samples onto an INFICON IC6 optically-flat, gold-plated, quartz-crystal microbalance (QCM)73

attached to an Advanced Research Systems (ARS) DE-204PB two-stage closed-cycle helium cold head hanging verti-74

cally into the vacuum chamber (Figure 1). We measured the temperatures of a sample on the quartz crystal using two75

temperature-sensitive diodes. The temperature was controlled with a 50 Ω heater wrapped around the cold tip and76

a Lake Shore temperature controller (model 355). We used a copper QCM mount and copper strap to maximize the77

thermal conductivity between the cold tip and the gold-plated quartz crystal. We were able to cool samples as low as78

10 K.79

We used a three-laser setup to measure the index of refraction of the sample at the wavelength of the lasers and the80

thickness of the sample. We placed two blue lasers of wavelengths 0.407 µm and 0.405 µm at angles θ1 = 3.7◦ ± 1.0◦81

1 https://science.gsfc.nasa.gov/691/cosmicice/constants.html
2 https://doi.org/10.5281/zenodo.4429276
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Figure 1. The left figure is a view of QCM from above showing its location relative to the lasers, detectors, and FTIR beam in
our system. The center figure is a side view of the QCM. The right figure is a face-on view of the QCM. The center and right
figures show the cold head, two diodes for temperature measurements, copper strap, and QCM mount. Ice is deposited on the
gold-plated quartz crystal. For clarity, wiring and indium foil to improve thermal conduction between the copper strap and the
copper QCM mount are not shown.

and θ2 = 45.2◦ ± 1.0◦ to the normal of the quartz-crystal surface while we grew an ice sample. We computed the82

index of refraction using83

nblue =

√√√√sin2θ2 − ( t1t2 )
2
sin2θ1

1− ( t1t2 )
2

(1)84

85

where t1 and t2, were the oscillation periods of the laser signals for the narrow-angle laser and the wide-angle laser,86

respectively, during deposition of the ice sample (Tempelmeyer & Mills 1968; Satorre et al. 2008; Romanescu et al.87

2010; Loeffler et al. 2016).88

We calculated the thickness, h, of the sample in µm from the number of fringes in the narrow-angle laser signal, N1,89

using90

h =
N1λ

2
√

n2
blue − sin2θ1

(2)91

92

(Heavens 1991) where λ is the wavelength of the blue laser (0.407 µm). For the two CH4 experiments we report on93

here, the thicknesses were 0.44 µm and 1.54 µm. For the H2O experiment, the thickness was 0.23 µm.94

Our techniques for measuring t1/t2 and N1 are different from what is published in the literature. First, we used blue95

lasers rather than red lasers because blue lasers give more fringes and deeper fringes than red lasers. In Figure 2a,96

we compare the fringes from the two blue lasers at θ1 = 3.7◦ ± 1.0◦ (top black line) and θ2 = 45.2◦ ± 1.0◦ (bottom97

black line) to the fringes from a third red laser at near-normal incidence to the sample surface (dashed black line).98

Second, we used the QCM to change the units on the x-axis from elapsed time in seconds as seen in Figure 2a to the99

fraction of full deposition, x, as seen in Figure 2b. Specifically, the QCM measured a frequency that depended on the100

deposited mass, where f1 was the frequency prior to deposition and f2 was the frequency after deposition. At each101

time step, i, we computed the fraction of full deposition as x = (f1 − f(i))/(f1 − f2). The conversion enabled us to102

remove any effects due to a variable deposition rate. Third, we determined the ratio of laser signal periods, t1/t2,103
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by measuring the number of fringes in each laser signal, N1 and N2. The values 1/N1 and 1/N2 gave the periods of104

the signals because we plotted each signal against the fraction of full deposition that ranged in value from 0 to 1. To105

determine the number of fringes for the first laser signal, we repeatedly plotted the original signal (x, laser-intensity1),106

and the original signal shifted by 1/N (x + 1/N , laser-intensity1) until we found the value of N that resulted in the107

best over-plot of the shifted signal on the original signal. We repeated the process for the second laser signal. We show108

the best-shifted signals in Figure 2b as dashed black lines. The ratio of the number of fringes gave us t1/t2,109

t1
t2

=
N2

N1
. (3)110

111
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Figure 2. Laser interferometry. a) Intensities of lasers vs. elapsed time of deposition. The two blue lasers at θ1 = 3.7◦ (top
black line) and θ2 = 45.2◦ (bottom black line) have more fringes and deeper fringes compared to a red laser at near-normal
incidence to the sample surface (dashed black line). b) Intensities of two blue lasers vs. fraction of full deposition allow us to
remove the effects of a variable deposition rate. Original laser signals shifted by one period (dashed black lines) enable us to
determine the periods of the laser signals.

We used the QCM to measure the density, ρ, of our ice sample in g cm−3. Specifically, the QCM measured the112

resonance frequency of the quartz-crystal prior to the deposition, f1, and at the end of the deposition, f2, in Hz.113

Combining these measured frequencies with our thickness measurement above, we computed the density from114
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ρ =
C

h

(
1

f2
− 1

f1

)
(4)115

116

where C = 4.417 x 105 Hz g cm−2 depends on the density and frequency constant of an AT-cut quartz-crystal (Lu &117

Lewis 1972).118

We used a Thermo-Nicolet iS50 Fourier transform infrared (FTIR) spectrometer to generate an external beam. Gold-119

coated parabolic mirrors focused the beam at an incidence angle of 8.5 degrees to the normal of the sample and upon120

reflection focused the beam onto a Mercury Cadmium Telluride type A (MCT-A) detector. All experiments covered121

a wavenumber, ν̃, (wavelength) range between 8000 cm−1 (1.25 µm) and 1000 cm−1 (10 µm) at a resolution of 0.5122

cm−1. We averaged 125 scans for each sample and reference (bare substrate) spectrum.123

3. REFLECTANCE MODEL124

Extraction of optical constants from a reflectance spectrum requires a model that simulates the experimental reflectance125

data. Teolis et al. (2007) devised such a model; however, they focused on band strengths rather than optical constants126

and did not publish their code. Here, we describe our reflectance model. We assign variables consistent with the127

Gerakines & Hudson (2020) transmission model. In particular, we define the optical constants of the thin film sample128

asm1(ν̃) = n1(ν̃)−ik1(ν̃), where n1 is the real-part and k1 is the imaginary-part. In the model, the light at wavenumber129

ν̃ in a vacuum is incident on the surface of the thin film of thickness h at an angle ϕ0 to the surface normal. Light from130

the FTIR reflects and refracts at the interfaces on its way to the detector as shown in Figure 3. We denote quantities131

associated with the vacuum, film, and substrate with the subscripts 0, 1, and 2, respectively. Because the incident132

light is not normal to the surface, we must account for the S and P polarization states. We assume unpolarized light133

and so we assign equal weights to the P- and S-states, where the P-state is the component of light that has its electric134

field parallel to the ice surface and the S-state is the component that has its electric field perpendicular to the surface.135

136

φ
o

Vacuum

Sample

Substrate

no

n1, k1

n2, k2

φ
1

h

FTIR Detector

φ
2

Figure 3. Quantities in the reflection model and the path of light from the FTIR, through the sample, and onto the detector.

Because we need to divide the experimental sample spectrum by the reference spectrum to remove instrumental effects,137

our model computes the reflectance spectrum from the ice-covered substrate divided by the reflectance spectrum from138

the bare substrate, i.e., the reflectance ratio, R, given by139

R =
RP +RS

|rP20|2 + |rS20|2
(5)140
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141

where142

RP = | r
P
1 + rP2 e

−2iδ1

1 + rP1 r
P
2 e

−2iδ1
|2 (6)143

144

and145

RS = | r
S
1 + rS2 e

−2iδ1

1 + rS1 r
S
2 e

−2iδ1
|2 (7)146

147

The lowercase r symbols represent the Fresnel coefficients. The coefficient rP1 and rS1 represent the amplitude of P-state148

light and S-state light reflected at the vacuum-ice interface and are given by149

rP1 =
m0cosϕ1 −m1cosϕ0

m0cosϕ1 +m1cosϕ0
. (8)150

151

rS1 =
m0cosϕ0 −m1cosϕ1

m0cosϕ0 +m1cosϕ1
. (9)152

153

The coefficient rP2 and rS2 represent the amplitude of P-state light and S-state light reflected at the ice-substrate154

interface and are given by155

rP2 =
m1cosϕ2 −m2cosϕ1

m1cosϕ2 +m2cosϕ1
. (10)156

157

rS2 =
m1cosϕ1 −m2cosϕ2

m1cosϕ1 +m2cosϕ2
. (11)158

159

The coefficients rP20 and rS20 represent the amplitude of P-state light and S-state light reflected at the vacuum-substrate160

interface and are given by161

rP20 =
m0cosϕ20 −m2cosϕ0

m0cosϕ20 +m2cosϕ0
. (12)162

163

rS20 =
m0cosϕ0 −m2cosϕ20

m0cosϕ0 +m2cosϕ20
. (13)164

165
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It is important to recognize that m0, m1, and m2 are the optical constants for vacuum, the ice film, and substrate,166

respectively, and are complex functions given by167

m0 = n0 − ik0 (14)168

169

m1 = n1(ν̃)− ik1(ν̃) (15)170

171

m2 = n2(ν̃)− ik2(ν̃) (16)172

173

The optical constants n0 = 1 and k0 = 0 are for vacuum. The optical constants n2 and k2 are for the gold substrate174

(Babar & Weaver 2015).175

The trigonometric values cosϕ1, cosϕ2, cosϕ20 come from the complex version of Snell’s Law and are given by176

cosϕ1 = (1− sin2ϕ0

n2
1 − k21 − 2in1k1

)1/2 (17)177

178

cosϕ2 = (1− n2
1 − k21 − 2in1k1

n2
2 − k22 − 2in2k2

sin2ϕ1)
1/2 (18)179

180

cosϕ20 = (1− sin2ϕ0

n2
2 − k22 − 2in2k2

)1/2 (19)181

182

Finally, δ1 is the change in phase of the beam on traversing the film and is given by183

δ1 = 2πν̃m1hcosϕ1 (20)184

185

See Heavens (1991) for derivations of Equations 6 − 13 and 20.186
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4. ITERATIVE ALGORITHM187

It is not possible to invert (5) and analytically solve for n1(ν̃) and k1(ν̃). Rather, the canonical approach, most recently188

described and modified by Gerakines & Hudson (2020), is to compare the model spectrum to the experimental spectrum189

and make iterative changes to the values of n1(ν̃) and k1(ν̃) in the model until the model spectrum closely approximates190

the experimental spectrum. We briefly outline the canonical method, while focusing on modifications we made to the191

Gerakins and Hudson Python code that is available on their website1.192

First, we collected the necessary inputs for the algorithm, i.e., our measurements of h, nblue, and the experimental193

reflectance ratio, Rlab, as well as the published optical constants for gold, n2(ν̃) and k2(ν̃), from Babar & Weaver194

(2015). Next, we set n1(ν̃) = nblue and k1(ν̃) = 0. Then, we used the reflectance model described in Section 3 to195

compute the first model spectrum, R. Just like Gerakines & Hudson (2020), we next computed a first improvement196

to k1 using the Newton-Raphson root-finding method ı.e., ∆k1, given by197

∆k1 =
lnRlab − lnR(n1, k1)

(∂lnR/∂k1)|n1,k1

. (21)198

199

Because of the complexity of R for reflectance at oblique incidence, we used a numerical approximation to the partial200

derivative in the denominator of (21). We note that the analytical expression used by Gerakins and Hudson for this201

partial derivative only applies to a transmission experiment at normal incidence. After replacing k1 with k1+∆k1, we202

used an approximation to a Kramers−Kronig relation to compute a new n1 at each wavenumber ν̃i of the spectrum,203

n1(ν̃i) ≈ nblue +
2

π

∫
ir

ν̃k1(ν̃)

ν̃2 − ν̃2i

dν̃. (22)204

205

We note that if the ice has a strong absorption band between the wavelength of the blue laser and where the integration206

begins in (22), the approximation could break down. However, in our case, neither CH4 nor H2O discussed below has207

strong absorption bands in this region.208

Next, we computed a second model R and compared it to Rlab. Then, we computed the fractional deviation between209

the model and experimental spectrum at each ν̃,210

|Rlab −R(n1, k1)|
Rlab

. (23)211

212

We then recalculated new values of n1 and k1 using (21) and (22) and subsequent values of R and the fractional213

deviation. We repeated the process until the fractional deviation was < 1.0 x 10−5 at every ν̃.214

In short, we modified the Python code of Gerakines & Hudson (2020) to include the reflection physics in Section 3,215

gold optical constants for the substrate, and a numerical approximation to the denominator in (21). The rest of the216

code is the same as the Gerakines and Hudson code, and their Figure 2 provides a flow chart of the overall algorithm.217

5. RESULTS218

5.1. CH4219

In this section, we describe our measurements of nblue, ρ, n1(ν̃), and k1(ν̃) for CH4. In each experiment, we obtained220

a spectrum of the bare substrate and recorded the laser and QCM signals while we background deposited the CH4-ice221

at 10 K.222
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Table 1. Index of Refraction and Density of Crystalline CH4

Phase T λ nvis ρ Ref

(K) (nm) (g cm−3)

Crystal II 10 0.407 1.34 ± 0.02 0.49 ± 0.01 a

Crystal II 10 0.633 1.30 0.47 b

Crystal I 30 0.633 1.30 0.47 b

Crystal I 30 0.628 1.36 0.45 c

aThis Work

bSatorre et al. (2008)

cMolpeceres et al. (2017)

CH4 ice has three different phases between 10 K and 30 K: amorphous, crystalline II, and crystalline I. Using profiles223

of the ν4 band near 1300 cm−1, Gerakines & Hudson (2015) showed the formation of amorphous CH4 required a224

slow deposition rate at temperatures below 20 K, and crystalline II resulted from a fast deposition rate below 20 K.225

Warming crystalline II ice from 10 K to 30 K formed crystalline I ice.226

In our experiments, we wanted to measure optical constants for crystalline I CH4 and compare them to values reported227

by Gerakines & Hudson (2020). We quickly deposited at 10 K obtaining nblue and ρ. A spectrum of each sample at228

10 K showed a ν4 band with a double peak, confirming crystalline II ice. Next, we warmed the sample 4 K min−1 to229

30 K. The spectra showed a symmetric ν4 band, confirming we had crystalline I ice.230

In Table 1, we present our measurements for the index of refraction and density of CH4 compared to previous work.231

We measure nblue = 1.34 ± 0.02 for CH4 deposited at 10 K. The uncertainty in nblue is dominated by the uncertainty232

in our measurement of θ2. Given the scatter of the index of refraction values in the work of Satorre et al. (2008)233

(their Figure 3), we conclude our measurement for the index of refraction is consistent with their measurement. Our234

density measurement is ρ = 0.49 ± 0.01 g cm−3 at 10 K. The uncertainty is the standard deviation of values from five235

experiments. From Table 1, we see our density measurement is in good agreement with Satorre.236

In Figure 4, we compare our measured spectrum to our best-fit model for the CH4 ν3 band at 3011 cm−1. We make the237

comparison in absorbance, i.e., −log10(Rsam/Rref ) to −log10R, where (Rsam/Rref ) is the sample spectrum divided238

by the reference spectrum (dashed black line) and R is the model spectrum from (5) (grey line). There is excellent239

agreement between the experimental and model spectra.240

In Figure 5a and 5b, we plot the imaginary part of the optical constants, k1(ν̃), for the ν3 (3011 cm−1) and the ν4 (1300241

cm−1) vibrational modes (grey line). These k-values come from our reflection spectrum of a 0.44 µm thick sample and242

the reflectance model described above. In addition, we over-plot k-values from Gerakines & Hudson (2020) (dashed243

black line) for a sample deposited at 10 K and warmed to 30 K. Despite the difference in reflection and transmission244

geometries, there is excellent agreement between the k-spectra. The agreement confirms consistent experimental and245

modeling procedures for both groups, as well as providing confidence in these k-values for radiation transfer modeling246

of outer Solar System objects.247

In Figure 6a − 6c, we plot our k-values for a thicker 1.54 µm CH4 sample so as to study the intrinsically weaker248

overtones and combination bands of CH4. We compare our k-values (grey lines) to the k-values of Grundy et al.249
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Figure 4. Comparison between experimental absorbance (dashed black line) and model (grey line) for the CH4 ν3 band at
3011 cm−1.

296029803000302030403060

Wavenumber (cm-1)

0.1

0.2

0.3

0.4

k

3.383.363.343.323.303.283.26

Wavelength ( m)

(a)

12801290130013101320

Wavenumber (cm-1)

0

0.2

0.4

0.6

0.8

1

1.2

k

7.807.757.707.657.60

Wavelength ( m)

(b)

Figure 5. Comparison between our k-values (grey lines) and Gerakines & Hudson (2020) k-values (dashed black lines) for CH4

at 30 K. a) The ν3 band at 3011 cm−1. b) The ν4 band at 1300 cm−1.

(2002) (dashed black lines). Unsurprisingly, the Grundy values exhibit a much higher signal-to-noise ratio than our250
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Figure 6. Comparison between our k-values (grey lines) and Grundy et al. (2002) k-values (dashed black lines) for CH4 at 30
K. a) The ν2 + ν3 band at 4530 cm−1. b) The ν3 + ν4 band at 4303 cm−1 and the ν1 + ν4 band at 4203 cm−1. c) The 3ν4 band
at 3846 cm−1.

values due to the much larger thicknesses of their samples. However, there is good agreement between the two sets251

of k-values. We note that the ν2 + ν3 band in Figure 6a is more than 1000 times weaker than the ν4 band plotted252

in Figure 5b. In Figure 6b, we plot the k-values for the ν3 + ν4 band at 4303 cm−1 and the ν1 + ν4 band at 4203253
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cm−1. We find good agreement between our values and the Grundy values for the ν3 + ν4 band; however, we find a254

significant disagreement in the ν1 + ν4 band. The double-peak at the top of the ν1 + ν4 band in the Grundy spectrum255

suggests saturation of the band. In Figure 6c, we plot the k-values for the 3ν4 band at 3846 cm−1. Again, we find256

good agreement between our values and the Grundy values, despite the much lower signal-to-noise of our much thinner257

sample. In summary, we find good agreement with the Grundy k-values, except for the ν1 + ν4 band at 4203 cm−1
258

where our thinner sample assures no saturation.259

5.2. H2O260

Our experimental setup is capable of studying materials that are liquids at room temperature. Here, we describe our261

measurements of nblue, ρ, n1(ν̃), and k1(ν̃) for crystalline H2O.262

Our sample preparation was as follows. We removed dissolved air in our purified liquid H2O with a freeze-pump-thaw263

process. Because an initially cold amorphous H2O sample heated past the amorphous−crystalline phase change at ∼264

135 K can retain significant amounts of amorphous ice (Jenniskens et al. 1998), we deposited our samples at 150 K to265

ensure a crystalline sample.266

For the index of refraction, we measured nblue = 1.36 ± 0.02. The uncertainty in nblue is dominated by the uncertainty267

in θ2. Hudgins et al. (1993) cited values of 1.26 to 1.35 in the literature for amorphous and crystalline H2O and used a268

value of 1.32. Westley et al. (1998) measured 1.29 ± 0.01 that was independent of deposition temperature between 30269

K and 140 K. Mastrapa et al. (2008, 2009) cited n = 1.32 at the wavelength of their laser from Hale & Querry (1973)270

for crystalline H2O; however, the reference is for liquid H2O at 298 K.271

For density, we measured ρ = 0.95 ± 0.01 g cm−3. Narten et al. (1976) used x-ray diffraction data to measure ρ =272

0.94 g cm−3 for amorphous ice at 77 K. Westley et al. (1998) measured ρ = 0.82 ± 0.01 g cm−3 for thin films vapor273

deposited between 30 K and 140 K. Hobbs (1974) reported ρ = 0.92 g cm−3 for hexagonal ice.274

H2O bands span orders of magnitude in their absorption efficiency and so require a range of thicknesses to avoid275

saturation of the bands. We chose to study the feature near 3200 cm−1 (3.1 µm) because of its large absorption276

efficiency and importance to planetary science. The feature is such a strong absorber that it required a very thin277

sample corresponding to about one interference fringe, thereby preventing us from using the method described above278

for measuring the thickness of the sample. So, we used our average density, the initial and final QCM frequencies for279

depositing the thin sample, and re-arranged (4) to solve for thickness. We measured a sample thickness of 0.23 µm.280

This technique was used by Loeffler et al. (2020) to measure the thicknesses of very thin H2O samples. We cooled the281

sample from 150 K to 10 K and collected spectra at intervals of 10 K.282

In Figure 7, we plot our k-values for the 3350 cm−1 (2.99 µm) ν3 LO mode, 3200 cm−1 (3.1 µm) ν3 TO mode, and283

the 3100 cm−1 (3.2 µm) ν1 mode (grey line) and compare them to those of Mastrapa et al. (2009) (dashed black284

line). We found good agreement between the two sets of k-values for the 3350 cm−1 (2.99 µm) and 3200 cm−1 (3.1285

µm), bands; however, there was a small difference between the k-values for the 3100 cm−1 (3.2 µm) band. Perhaps286

the small differences are due to Mastrapa computing k values from their transmission spectrum and then using the287

Kramers-Kroning relation to compute n rather than the iterative approach described here.288

In Figure 8, we plot k-values for the 3350 cm−1 (2.99 µm), 3200 cm−1 (3.1 µm), and 3100 cm−1 (3.2 µm) bands289

of crystalline H2O at temperatures of 150 K (dashed black line), 100 K (grey line), and 50 K (black line). As290

the temperature cools, the 3200 cm−1 (3.1 µm) band becomes stronger and shifts to smaller wavenumbers (larger291

wavelengths) and the 3100 cm−1 (3.2 µm) band becomes more pronounced in the spectrum. Similar behavior was seen292

for these bands in Figure 5 of Mastrapa et al. (2009).293
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Figure 7. Imaginary part of the optical constants, k, as a function of wavenumber and wavelength for crystalline H2O at 50 K
from this work (grey line) and Mastrapa et al. (2008) (dashed black line). The 3350 cm−1 (2.99 µm) ν3 LO mode, 3200 cm−1

(3.1 µm) ν3 TO mode, and the 3100 cm−1 (3.2 µm) ν1 mode.
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Figure 8. Imaginary part of the optical constants, k, as a function of wavenumber and wavelength for the 3350 cm−1 (2.99
µm) ν3 LO mode, 3200 cm−1 (3.1 µm) ν3 TO mode, and the 3100 cm−1 (3.2 µm) ν1 mode of crystalline H2O at 150 K (dashed
black line), 100 K (grey line), and 50 K (black line).

6. CONCLUSIONS294

We described our experimental setup and a modification of the algorithm by Gerakines & Hudson (2020) to compute295

optical constants from reflectance spectroscopy. We applied our experimental techniques and algorithm to CH4-ice296

at 30 K. We found good agreement with optical constants by Gerakines & Hudson (2020) and Grundy et al. (2002),297

except for the ν1+ν4 band at 4203 cm−1 where their band profile suggests saturation. The overall good agreement with298

the literature gives us confidence in our experimental techniques and our modification of the Gerakins and Hudson299

algorithm. We applied the modified algorithm to our experiments on crystalline H2O ice at 50 K. The resulting300

k-values for the 3200 cm−1 (3.1 µm) feature compared well with Mastrapa et al. (2008).301

We demonstrated that our experimental setup and modifications to the Gerakines & Hudson (2020) algorithm are302

capable of computing optical constants consistent with what is published in the literature. Our laboratory data,303

modified Python algorithm, and optical constants discussed in this paper are available at the OpenKnowledge@NAU304
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archive.3 These tools will be of use in computing optical constants essential for modeling the near- and mid-infrared305

spectra of outer Solar System objects obtained with the James Webb Space Telescope.306
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