1,646 research outputs found

    Implementation of a Toffoli Gate with Superconducting Circuits

    Full text link
    The quantum Toffoli gate allows universal reversible classical computation. It is also an important primitive in many quantum circuits and quantum error correction schemes. Here we demonstrate the realization of a Toffoli gate with three superconducting transmon qubits coupled to a microwave resonator. By exploiting the third energy level of the transmon qubit, the number of elementary gates needed for the implementation of the Toffoli gate, as well as the total gate time can be reduced significantly in comparison to theoretical proposals using two-level systems only. We characterize the performance of the gate by full process tomography and Monte Carlo process certification. The gate fidelity is found to be 68.5±0.568.5\pm0.5%.Comment: 4 pages, 5figure

    The Minimum Information Required for a Glycomics Experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data

    Get PDF
    MIRAGE (Minimum Information Required for A Glycomics Experiment) is an initiative that was created by experts in the fields of glycobiology, glycoanalytics, and glycoinformatics to produce guidelines for reporting results from the diverse types of experiments and analyses used in structural and functional studies of glycans in the scientific literature. As a sequel to the guidelines for sample preparation (Struwe et al. 2016, Glycobiology, 26, 907-910) and mass spectrometry (MS) data (Kolarich et al. 2013, Mol. Cell Proteomics. 12, 991-995), here we present the first version of guidelines intended to improve the standards for reporting data from glycan microarray analyses. For each of eight areas in the workflow of a glycan microarray experiment, we provide guidelines for the minimal information that should be provided in reporting results. We hope that the MIRAGE glycan microarray guidelines proposed here will gain broad acceptance by the community, and will facilitate interpretation and reproducibility of the glycan microarray results with implications in comparison of data from different laboratories and eventual deposition of glycan microarray data in international databases

    Synthetic Activation of Endogenous PI3K and Rac Identifies an AND-Gate Switch for Cell Polarization and Migration

    Get PDF
    Phosphatidylinositol 3-OH kinase (PI3K) has been widely studied as a principal regulator of cell polarization, migration, and chemotaxis [1], [2], [3], [4]. Surprisingly, recent studies showed that mammalian neutrophils and Dictyostelium discoideum cells can polarize and migrate in the absence of PI3K activity [5], [6], [7]. Here we directly probe the roles of PI3K and its downstream effector, Rac, in HL-60 neutrophils by using a chemical biology approach whereby the endogenously present enzymes are synthetically activated in less than one minute [8], [9], [10]. We show that uniform activation of endogenous PI3K is sufficient to polarize previously unpolarized neutrophils and trigger effective cell migration. After a delay following symmetrical phosphatidylinositol (3,4,5)-triphosphate (PIP3) production, a polarized distribution of PIP3 was induced by positive feedback requiring actin polymerization. Pharmacological studies argue that this process does not require receptor-coupled trimeric G proteins. Contrary to the current working model, rapid activation of endogenous Rac proteins triggered effective actin polymerization but failed to feed back to PI3K to generate PIP3 or induce cell polarization. Thus, the increase in PIP3 concentration at the leading edge is generated by positive feedback with an AND gate logic with a PI3K-Rac-actin polymerization pathway as a first input and a PI3K initiated non-Rac pathway as a second input. This AND-gate control for cell polarization can explain how Rac can be employed for both PI3K-dependent and -independent signaling pathways coexisting in the same cell

    Quantitative multi-modality imaging analysis of a fully bioresorbable stent: a head-to-head comparison between QCA, IVUS and OCT

    Get PDF
    The bioresorbable vascular stent (BVS) is totally translucent and radiolucent, leading to challenges when using conventional invasive imaging modalities. Agreement between quantitative coronary angiography (QCA), intravascular ultrasound (IVUS) and optical coherence tomography (OCT) in the BVS is unknown. Forty five patients enrolled in the ABSORB cohort B1 study underwent coronary angiography, IVUS and OCT immediately post BVS implantation, and at 6 months. OCT estimated stent length accurately compared to nominal length (95% CI of the difference: −0.19; 0.37 and −0.15; 0.47 mm2 for baseline and 6 months, respectively), whereas QCA incurred consistent underestimation of the same magnitude at both time points (Pearson correlation = 0.806). IVUS yielded low accuracy (95% CI of the difference: 0.77; 3.74 and −1.15; 3.27 mm2 for baseline and 6 months, respectively), with several outliers and random variability test–retest. Minimal lumen area (MLA) decreased substantially between baseline and 6 months on QCA and OCT and only minimally on IVUS (95% CI: 0.11; 0.42). Agreement between the different imaging modalities is poor: worst agreement Videodensitometry-IVUS post-implantation (ICCa 0.289); best agreement IVUS-OCT at baseline (ICCa 0.767). All pairs deviated significantly from linearity (P < 0.01). Passing-Bablok non-parametric orthogonal regression showed constant and proportional bias between IVUS and OCT. OCT is the most accurate technique for measuring stent length, whilst QCA incurs systematic underestimation (foreshortening) and solid state IVUS incurs random error. Volumetric calculations using solid state IVUS are therefore not reliable. There is poor agreement for MLA estimation between all the imaging modalities studied, including IVUS-OCT, hence their values are not interchangeable

    Effect of Hydrogen Peroxide on Immersion Challenge of Rainbow Trout Fry with Flavobacterium psychrophilum

    Get PDF
    An experimental model for immersion challenge of rainbow trout fry (Oncorhynchus mykiss) with Flavobacterium psychrophilum, the causative agent of rainbow trout fry syndrome and bacterial cold water disease was established in the present study. Although injection-based infection models are reliable and produce high levels of mortality attempts to establish a reproducible immersion model have been less successful. Various concentrations of hydrogen peroxide (H₂O₂) were evaluated before being used as a pre-treatment stressor prior to immersion exposure to F. psychrophilum. H₂O₂ accelerated the onset of mortality and increased mortality approximately two-fold; from 9.1% to 19.2% and from 14.7% to 30.3% in two separate experiments. Clinical signs observed in the infected fish corresponded to symptoms characteristically seen during natural outbreaks. These findings indicate that pre-treatment with H₂O₂ can increase the level of mortality in rainbow trout fry after exposure to F. psychrophilum

    Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins

    Get PDF
    Maintenance of appropriate iron homeostasis in the brain is important, but the mechanisms involved in brain iron uptake are incompletely understood. Here, we have analyzed where messenger RNAs that encode iron transport proteins are expressed in the brain, using the Allen Brain atlas, and we conclude that several important iron transporters are highly expressed in the choroid plexus. Based on recent estimates of the surface area of the choroid plexus and on MRI imaging studies of manganese uptake in the brain, we propose that the choroid plexus may have a much greater role than has been previously appreciated in brain iron transport

    Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays

    Get PDF
    We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using 360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ) charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which the pions are from Rho0 decay. The latter case also encompasses exotic interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho hypotheses are compatible with our data. Since 3S1 is untenable on other grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872). Models for different J/Psi-Rho angular momenta L are considered. Flexibility in the models, especially the introduction of Rho-Omega interference, enable good descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let

    Precision measurement of the top quark mass from dilepton events at CDF II

    Get PDF
    We report a measurement of the top quark mass, M_t, in the dilepton decay channel of ttˉb+νbˉνˉt\bar{t}\to b\ell'^{+}\nu_{\ell'}\bar{b}\ell^{-}\bar{\nu}_{\ell} using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected with the CDF II detector. We apply a method that convolutes a leading-order matrix element with detector resolution functions to form event-by-event likelihoods; we have enhanced the leading-order description to describe the effects of initial-state radiation. The joint likelihood is the product of the likelihoods from 78 candidate events in this sample, which yields a measurement of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.}) \mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to publication by journa
    corecore