410 research outputs found
Leiomyosarcoma of the skin with osteoclast-like giant cells: a case report
<p>Abstract</p> <p>Introduction</p> <p>Osteoclast-like giant cells have been noted in various malignant tumors, such as, carcinomas of pancreas and liver and leiomyosarcomas of non-cutaneous locations, such as, uterus and rectum. We were unable to find any reported case of a leiomyosarcoma of the skin where osteoclast-like giant cells were present in the tumor.</p> <p>Case presentation</p> <p>We report a case of a 59-year-old woman with a cutaneous leiomyosarcoma associated with osteoclast-like giant cells arising from the subcutaneous artery of the leg. The nature of the giant cells is discussed in light of the findings from the immunostaining as well as survey of the literature.</p> <p>Conclusion</p> <p>A rare case of cutaneous leiomyosarcoma with osteoclast-like giant cells is reported. The giant cells in the tumor appear to be reactive histiocytic cells.</p
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Characterization of voltage-gated ionic currents in a peripheral sensory neuron in larval Drosophila.
BACKGROUND: The development, morphology and genetics of sensory neurons have been extensively studied in Drosophila. Sensory neurons in the body wall of larval Drosophila in particular have been the subject of numerous anatomical studies, however, little is known about the intrinsic electrical properties of larval sensory cells. FINDINGS: We performed whole cell patch recordings from an identified peripheral sensory cell, the dorsal bipolar sensory neuron (dbd) and measured voltage-gated ionic currents in 1st instar larvae. Voltage clamp analysis revealed that dbds have a TEA sensitive, non-inactivating IK type potassium current as well as a 4-AP sensitive, inactivating IA type potassium current. dbds also show a voltage-gated calcium current (ICa) and a voltage-gated sodium current (INa). CONCLUSIONS: This work provides a first characterization of voltage-activated ionic currents in an identified body-wall sensory neuron in larval Drosophila. Overall, we establish baseline physiology data for future studies aimed at understanding the ionic and genetic basis of sensory neuron function in fruit flies and other model organisms.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Measurement of the t¯tZ and t¯tW cross sections in proton-proton collisions at √s=13 TeV with the ATLAS detector
A measurement of the associated production of a top-quark pair (t¯t) with a vector boson (W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using 36.1 fb−1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The t¯tZ and t¯tW production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are σt¯tZ=0.95±0.08stat±0.10syst pb and σt¯tW=0.87±0.13stat±0.14syst pb in agreement with the Standard Model predictions. The measurement of the t¯tZ cross section is used to set constraints on effective field theory operators which modify the t¯tZ vertex
Measurement of the inclusive and fiducial tt ¯ production cross-sections in the lepton+jets channel in pp collisions at s √ =8 TeV with the ATLAS detector
The inclusive and fiducial tt ¯ production cross-sections are measured in the lepton+jets channel using 20.2 fb −1 of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and b -tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W+jets process is modelled using Z+jets events in a data-driven approach. The inclusive tt ¯ cross-section is measured with a precision of 5.7% to be σ inc (tt ¯ ) = 248.3 ± 0.7 (stat.) ± 13.4 (syst.) ± 4.7 (lumi.) pb, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is σ fid (tt ¯ ) = 48.8 ± 0.1 (stat.) ± 2.0 (syst.) ± 0.9 (lumi.) pb with a precision of 4.5%
Update to the College of American Pathologists Reporting on Thyroid Carcinomas
Background The reporting of thyroid carcinomas follows the recommendations of the College of American Pathologists (CAP) protocols and includes papillary carcinoma, follicular carcinoma, anaplastic carcinoma and medullary carcinoma. Despite past and recent efforts, there are a number of controversial issues in the classification and diagnosis of thyroid carcinomas (TC) that, potentially impact on therapy and prognosis of patients with TC. Discussion The most updated version of the CAP thyroid cancer protocol incorporates recent changes in histologic classification as well as changes in the staging of thyroid cancers as per the updated American Joint Commission on Cancer staging manual. Among the more contentious issues in the pathology of thyroid carcinoma include the defining criteria for tumor invasiveness. While there are defined criteria for invasion, there is not universal agreement in what constitutes capsular invasion, angioinvasion and extrathyroidal invasion. Irrespective of the discrepant views on invasion, pathologists should report on the presence and extent (focal, widely) of capsular invasion, angioinvasion and extrathyroidal extension. These findings assist clinicians in their assessment of the recurrence risk and potential for metastatic disease. It is beyond the scope of this paper to detail the entire CAP protocol for thyroid carcinomas; rather, this paper addresses some of the more problematic issues confronting pathologists in their assessment and reporting of thyroid carcinomas. Conclusion The new CAP protocol for reporting of thyroid carcinomas is a step toward improving the clinical value of the histopathologic reporting of TC. Large meticulous clinico-pathologic and molecular studies with long term follow up are still needed in order to increase the impact of microscopic examination on the prognosis and management of TC
An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans
Non-invasive recording in untethered animals is arguably the ultimate step in the analysis of neuronal function, but such recordings remain elusive. To address this problem, we devised a system that tracks neuron-sized fluorescent targets in real time. The system can be used to create virtual environments by optogenetic activation of sensory neurons, or to image activity in identified neurons at high magnification. By recording activity in neurons of freely moving C. elegans, we tested the long-standing hypothesis that forward and reverse locomotion are generated by distinct neuronal circuits. Surprisingly, we found motor neurons that are active during both types of locomotion, suggesting a new model of locomotion control in C. elegans. These results emphasize the importance of recording neuronal activity in freely moving animals and significantly expand the potential of imaging techniques by providing a mean to stabilize fluorescent targets
Optical Dissection of Neural Circuits Responsible for Drosophila Larval Locomotion with Halorhodopsin
Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibirets, namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1–10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds
Prognostic factors affecting survival after surgical resection of gastrointestinal stromal tumours: a two-unit experience over 10 years
BACKGROUND: Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal neoplasm of the gastrointestinal (GI) tract which has only been recently described based on their specific immunohistochemistry and the presence of particular KIT-related mutations which potentially make them targets for tyrosine kinase inhibition. METHODS: Sixty-one patients (29 M; 32 F, median age 60 years; range: 23–86 years) between June 1994 and March 2005, were analyzed from two allied institutions. Patient, tumour, and treatment variables were analyzed to identify factors affecting survival. RESULTS: Of the 61 patients, 55 (90%) underwent complete surgical resection of macroscopic disease. The 5-year overall survival (OS) rate in the 61 patients was 88% and the 5-year disease-free survival (DFS) in the 55 cases completely resected was 75%. Univariate analysis revealed that R0 resection was strongly associated with a better OSrate (p < 0.0001). Likewise, univariate analysis also showed high mitotic count of > 10 mitoses/per 50 HPF was a significant variable in worse prognosis for OS (≤ 10 mitoses/per 50 HPF 95% 5-year OS vs. > 10 mitoses/per 50 HPF 74% 5-year OS, respectively; p = 0.013). On subsequent multivariate analysis, only high mitotic count remained as a significant negative prognostic variable for OS (p = 0.029). Among patients resected for cure, there were 8 recurrences during follow-up. The mean time to recurrence was 21 ± 10 months (range: 4–36 months). Univariate analysis revealed that mitotic count of > 10 mitoses per 50 high power fields, intratumoural necrosis, and pathological tumour size (> 10 cm in maximal diameter) significantly correlated with DFS (p = 0.006, 0.002 and 0.02, respectively), with tumour necrosis and high mitotic count remaining as independent predictive variables affecting prognosis on subsequent multivariate analysis. CONCLUSION: Most GISTs are resectable with survival principally dependent upon mitotic count and completeness of resection. Future metabolic and genetic analyses will define the role of and resistance to induction or postoperative adjuvant targeted kinase inhibition therapy
Inositol 1,4,5- Trisphosphate Receptor Function in Drosophila Insulin Producing Cells
The Inositol 1,4,5- trisphosphate receptor (InsP3R) is an intracellular ligand gated channel that releases calcium from intracellular stores in response to extracellular signals. To identify and understand physiological processes and behavior that depends on the InsP3 signaling pathway at a systemic level, we are studying Drosophila mutants for the InsP3R (itpr) gene. Here, we show that growth defects precede larval lethality and both are a consequence of the inability to feed normally. Moreover, restoring InsP3R function in insulin producing cells (IPCs) in the larval brain rescues the feeding deficit, growth and lethality in the itpr mutants to a significant extent. We have previously demonstrated a critical requirement for InsP3R activity in neuronal cells, specifically in aminergic interneurons, for larval viability. Processes from the IPCs and aminergic domain are closely apposed in the third instar larval brain with no visible cellular overlap. Ubiquitous depletion of itpr by dsRNA results in feeding deficits leading to larval lethality similar to the itpr mutant phenotype. However, when itpr is depleted specifically in IPCs or aminergic neurons, the larvae are viable. These data support a model where InsP3R activity in non-overlapping neuronal domains independently rescues larval itpr phenotypes by non-cell autonomous mechanisms
- …
