422 research outputs found

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    DNA Suspension Arrays: Silencing Discrete Artifacts for High-Sensitivity Applications

    Get PDF
    Detection of low frequency single nucleotide polymorphisms (SNPs) has important implications in early screening for tumorgenesis, genetic disorders and pathogen drug resistance. Nucleic acid arrays are a powerful tool for genome-scale SNP analysis, but detection of low-frequency SNPs in a mixed population on an array is problematic. We demonstrate a model assay for HIV-1 drug resistance mutations, wherein ligase discrimination products are collected on a suspension array. In developing this system, we discovered that signal from multiple polymorphisms was obscured by two discrete hybridization artifacts. Specifically: 1) tethering of unligated probes on the template DNA elicited false signal and 2) unpredictable probe secondary structures impaired probe capture and suppressed legitimate signal from the array. Two sets of oligonucleotides were used to disrupt these structures; one to displace unligated reporter labels from the bead-bound species and another to occupy sequences which interfered with array hybridization. This artifact silencing system resulted in a mean 21-fold increased sensitivity for 29 minority variants of 17 codons in our model assay for mutations most commonly associated with HIV-1 drug resistance. Furthermore, since the artifacts we characterized are not unique to our system, their specific inhibition might improve the quality of data from solid-state microarrays as well as from the growing number of multiple analyte suspension arrays relying on sequence-specific nucleic acid target capture

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Glutamate-Gated Chloride Channels of Haemonchus contortus Restore Drug Sensitivity to Ivermectin Resistant Caenorhabditis elegans

    Get PDF
    Anthelmintic resistance is a major problem in livestock farming, especially of small ruminants, but our understanding of it has been limited by the difficulty in carrying out functional genetic studies on parasitic nematodes. An important nematode infecting sheep and goats is Haemonchus contortus; in many parts of the world this species is resistant to almost all the currently available drugs, including ivermectin. It is extremely polymorphic and to date it has proved impossible to relate any sequence polymorphisms to its ivermectin resistance status. Expression of candidate drug-resistance genes in Caenorhabditis elegans could provide a convenient means to study the effects of polymorphisms found in resistant parasites, but may be complicated by differences between the gene families of target and model organisms. We tested this using the glutamate-gated chloride channel (GluCl) gene family, which forms the ivermectin drug target and are candidate resistance genes. We expressed GluCl subunits from C. elegans and H. contortus in a highly resistant triple mutant C. elegans strain (DA1316) under the control of the avr-14 promoter; expression of GFP behind this promoter recapitulated the pattern previously reported for avr-14. Expression of ivermectin-sensitive subunits from both species restored drug sensitivity to transgenic worms, though some quantitative differences were noted between lines. Expression of an ivermectin-insensitive subunit, Hco-GLC-2, had no effect on drug sensitivity. Expression of a previously uncharacterised parasite-specific subunit, Hco-GLC-6, caused the transgenic worms to become ivermectin sensitive, suggesting that this subunit also encodes a GluCl that responds to the drug. These results demonstrate that both orthologous and paralogous subunits from C. elegans and H. contortus are able to rescue the ivermectin sensitivity of mutant C. elegans, though some quantitative differences were observed between transgenic lines in some assays. C. elegans is a suitable system for studying parasitic nematode genes that may be involved in drug resistance

    The cys-loop ligand-gated ion channel gene superfamily of the nematode, Caenorhabditis elegans

    Get PDF
    The nematode, Caenorhabditis elegans, possesses the most extensive known superfamily of cys-loop ligand-gated ion channels (cys-loop LGICs) consisting of 102 subunit-encoding genes. Less than half of these genes have been functionally characterised which include cation-permeable channels gated by acetylcholine (ACh) and γ-aminobutyric acid (GABA) as well as anion-selective channels gated by ACh, GABA, glutamate and serotonin. Following the guidelines set for genetic nomenclature for C. elegans, we have designated unnamed subunits as lgc genes (ligand-gated ion channels of the cys-loop superfamily). Phylogenetic analysis shows that several of these lgc subunits form distinct groups which may represent novel cys-loop LGIC subtypes

    Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells

    Get PDF
    Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation

    "Flogging dead horses": evaluating when have clinical trials achieved sufficiency and stability? A case study in cardiac rehabilitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most systematic reviews conclude that another clinical trial is needed. Measures of sufficiency and stability may indicate whether this is true.</p> <p>Objectives: To show how evidence accumulated on centre-based versus home-based cardiac rehabilitation, including estimates of sufficiency and stability</p> <p>Methods</p> <p>Systematic reviews of clinical trials of home versus centre-based cardiac rehabilitation were used to develop a cumulative meta-analysis over time. We calculated the standardised mean difference (SMD) in effect, confidence intervals and indicators of sufficiency and stability. Sufficiency refers to whether the meta-analytic database adequately demonstrates that an intervention works - is statistically superior to another. It does this by assessing the number of studies with null results that would be required to make the meta-analytic effect non-statistically significant. Stability refers to whether the direction and size of the effect is stable as new studies are added to the meta-analysis.</p> <p>Results</p> <p>The standardised mean effect difference reduced over fourteen comparisons from a non-significant difference favouring home-based cardiac rehabilitation to a very small difference favouring hospital (SMD -0.10, 95% CI -0.32 to 0.13). This difference did not reach the sufficiency threshold (failsafe ratio 0.039 < 1) but did achieve the criteria for stability (cumulative slope 0.003 < 0.005).</p> <p>Conclusions</p> <p>The evidence points to a relatively small effect difference which was stable but not sufficient in terms of the suggested thresholds. Sufficiency should arguably be based on substantive significance and decided by patients. Research on patient preferences should be the priority. Sufficiency and stability measures are useful tools that need to be tested in further case studies.</p

    A ‘modified de Gramont’ regimen of fluorouracil, alone and with oxaliplatin, for advanced colorectal cancer

    Get PDF
    The standard de Gramont (dG) regimen of fortnightly leucovorin, bolus fluorouracil and 22-h infusion of fluorouracil, d1+2, and the same regimen plus oxaliplatin, are effective but also cumbersome. We therefore present simplified ‘Modified de Gramont’ (MdG) regimens. Forty-six advanced gastrointestinal cancer patients entered a dose-exploring study of MdG, including an expanded cohort of colorectal cancer patients at optimum dose. Treatment (fortnightly) comprised: 2-h i.v.i. leucovorin (350 mg d,l-LV or 175 mg l-LV, not adjusted for patient surface area); bolus fluorouracil (400 mg m−2), then ambulatory 46-h fluorouracil infusion (2000–3600 mg m−2, cohort escalation). Subsequently, 62 colorectal patients (25 unpretreated; 37 fluorouracil-resistant) received MdG plus oxaliplatin (OxMdG) 85 mg m−2. Fluorouracil pharmacokinetics during MdG were compared with dG. The optimum fluorouracil doses for MdG alone were determined as 400 mg m−2 bolus + 2800 mg m−2 46-h infusion. A lower dose of 400 mg m−2 bolus + 2400 mg m−2 infusion which, like dG produces minimal toxicity, was chosen for the OxMdG combination. Fluorouracil exposure (AUC0–48 h) at this lower dose is equivalent to dG. With OxMdG, grade 3–4 toxicity was rare (neutropenia 2.8% cycles; vomiting or diarrhoea <1% cycles), but despite this there were two infection-associated deaths. Oxaliplatin was omitted for cumulative neurotoxicity in 17 out of 62 patients. Objective responses in colorectal cancer patients were: 1st-line MdG (22 assessable): PR=36%, NC=32%, PD=32%. 1st-line OxMdG (24 assessable): CR/PR=72%; NC=20%; PD=8%; 2nd line OxMdG (34 assessable): PR=12%; NC=38%; PD=50%. MdG and OxMdG are convenient and well-tolerated. OxMdG was particularly active as 1st-line treatment of advanced colorectal cancer. Both regimens are being further evaluated in the current UK MRC phase III trial
    corecore