301 research outputs found

    Spatial Variation in Foraging Behaviour of a Marine Top Predator (Phoca vitulina) Determined by a Large-Scale Satellite Tagging Program

    Get PDF
    The harbour seal (Phoca vitulina) is a widespread marine predator in Northern Hemisphere waters. British populations have been subject to rapid declines in recent years. Food supply or inter-specific competition may be implicated but basic ecological data are lacking and there are few studies of harbour seal foraging distribution and habits. In this study, satellite tagging conducted at the major seal haul outs around the British Isles showed both that seal movements were highly variable among individuals and that foraging strategy appears to be specialized within particular regions. We investigated whether these apparent differences could be explained by individual level factors: by modelling measures of trip duration and distance travelled as a function of size, sex and body condition. However, these were not found to be good predictors of foraging trip duration or distance, which instead was best predicted by tagging region, time of year and inter-trip duration. Therefore, we propose that local habitat conditions and the constraints they impose are the major determinants of foraging movements. Specifically the distance to profitable feeding grounds from suitable haul-out locations may dictate foraging strategy and behaviour. Accounting for proximity to productive foraging resources is likely to be an important component of understanding population processes. Despite more extensive offshore movements than expected, there was also marked fidelity to the local haul-out region with limited connectivity between study regions. These empirical observations of regional exchange at short time scales demonstrates the value of large scale electronic tagging programs for robust characterization of at-sea foraging behaviour at a wide spatial scale

    Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of single-crystal tungsten strength

    Full text link
    Understanding and improving the mechanical properties of tungsten is a critical task for the materials fusion energy program. The plastic behavior in body-centered cubic (bcc) metals like tungsten is governed primarily by screw dislocations on the atomic scale and by ensembles and interactions of dislocations at larger scales. Modeling this behavior requires the application of methods capable of resolving each relevant scale. At the small scale, atomistic methods are used to study single dislocation properties, while at the coarse-scale, continuum models are used to cover the interactions between dislocations. In this work we present a multiscale model that comprises atomistic, kinetic Monte Carlo (kMC) and continuum-level crystal plasticity (CP) calculations. The function relating dislocation velocity to applied stress and temperature is obtained from the kMC model and it is used as the main source of constitutive information into a dislocation-based CP framework. The complete model is used to perform material point simulations of single-crystal tungsten strength. We explore the entire crystallographic orientation space of the standard triangle. Non-Schmid effects are inlcuded in the model by considering the twinning-antitwinning (T/AT) asymmetry in the kMC calculations. We consider the importance of ?111?{110} and 111 {112} slip systems in the homologous temperature range from 0.08Tm to 0.33Tm, where Tm =3680 K is the melting point in tungsten.</p

    Ions modulate stress-induced nano-texture in supported fluid lipid bilayers.

    Get PDF
    Most plasma membranes comprise a large number of different molecules including lipids and proteins. In the standard fluid mosaic model, the membrane function is effected by proteins whereas lipids are largely passive and serve solely in the membrane cohesion. Here we show, using supported 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers in different saline solutions, that ions can locally induce ordering of the lipid molecules within the otherwise fluid bilayer when the latter is supported. This nanoordering exhibits a characteristic length scale of ∼20 nm, and manifests itself clearly when mechanical stress is applied to the membrane. Atomic force microscopy (AFM) measurements in aqueous solutions containing NaCl, KCl, CaCl2, and Tris buffer show that the magnitude of the effect is strongly ion-specific, with Ca2+ and Tris, respectively, promoting and reducing stress-induced nanotexturing of the membrane. The AFM results are complemented by fluorescence recovery after photobleaching experiments, which reveal an inverse correlation between the tendency for molecular nanoordering and the diffusion coefficient within the bilayer. Control AFM experiments on other lipids and at different temperatures support the hypothesis that the nanotexturing is induced by reversible, localized gel-like solidification of the membrane. These results suggest that supported fluid phospholipid bilayers are not homogenous at the nanoscale, but specific ions are able to locally alter molecular organization and mobility, and spatially modulate the membrane’s properties on a length scale of ∼20 nm. To illustrate this point, AFM was used to follow the adsorption of the membrane-penetrating antimicrobial peptide Temporin L in different solutions. The results confirm that the peptides do not absorb randomly, but follow the ion-induced spatial modulation of the membrane. Our results suggest that ionic effects have a significant impact for passively modulating the local properties of biological membranes, when in contact with a support such as the cytoskeleton

    Psychopathic Traits of Dutch Adolescents in Residential Care: Identifying Subgroups

    Get PDF
    The present study examined whether a sample of 214 (52.8% male, M age = 15.76, SD = 1.29) institutionalized adolescents could be classified into subgroups based on psychopathic traits. Confirmatory Factor Analyses revealed a relationship between the subscales of the Youth Psychopathic traits Inventory (YPI) and the three latent constructs of the original model on which it is based. Latent Class Analyses showed that adolescents showing psychopathic traits could be classified into three subgroups. The first group showed low scores on the grandiose/manipulative dimension, the callous/unemotional dimension, and the impulsive/irresponsible dimension (normal group). The second group scored moderate on the grandiose/manipulative dimension and the callous/unemotional dimension and high on the impulsive/irresponsible dimension (impulsive, non-psychopathic-like group). The third group scored high on all three dimensions (psychopathy-like group). The findings revealed that the impulsive, non-psychopathic like group scored significantly higher on internalizing problem behavior compared to the normal group, while the psychopathy-like and the impulsive, non-psychopathic-like group both scored higher on externalizing problem behavior compared to the normal group. Based on a self-report delinquency measure, it appeared that the psychopathy-like group had the highest delinquency rates, except for vandalism. Both the impulsive and psychopathy-like group had the highest scores on the use of soft drugs

    Smoking prevalence and attributable disease burden in 195 countries and territories, 1990-2015 : a systematic analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background The scale-up of tobacco control, especially after the adoption of the Framework Convention for Tobacco Control, is a major public health success story. Nonetheless, smoking remains a leading risk for early death and disability worldwide, and therefore continues to require sustained political commitment. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) offers a robust platform through which global, regional, and national progress toward achieving smoking-related targets can be assessed. Methods We synthesised 2818 data sources with spatiotemporal Gaussian process regression and produced estimates of daily smoking prevalence by sex, age group, and year for 195 countries and territories from 1990 to 2015. We analysed 38 risk-outcome pairs to generate estimates of smoking-attributable mortality and disease burden, as measured by disability-adjusted life-years (DALYs). We then performed a cohort analysis of smoking prevalence by birth-year cohort to better understand temporal age patterns in smoking. We also did a decomposition analysis, in which we parsed out changes in all-cause smoking-attributable DALYs due to changes in population growth, population ageing, smoking prevalence, and risk-deleted DALY rates. Finally, we explored results by level of development using the Socio-demographic Index (SDI). Findings Worldwide, the age-standardised prevalence of daily smoking was 25.0% (95% uncertainty interval [UI] 24.2-25.7) for men and 5.4% (5.1-5.7) for women, representing 28.4% (25.8-31.1) and 34.4% (29.4-38.6) reductions, respectively, since 1990. A greater percentage of countries and territories achieved significant annualised rates of decline in smoking prevalence from 1990 to 2005 than in between 2005 and 2015; however, only four countries had significant annualised increases in smoking prevalence between 2005 and 2015 (Congo [Brazzaville] and Azerbaijan for men and Kuwait and Timor-Leste for women). In 2015, 11.5% of global deaths (6.4 million [95% UI 5.7-7.0 million]) were attributable to smoking worldwide, of which 52.2% took place in four countries (China, India, the USA, and Russia). Smoking was ranked among the five leading risk factors by DALYs in 109 countries and territories in 2015, rising from 88 geographies in 1990. In terms of birth cohorts, male smoking prevalence followed similar age patterns across levels of SDI, whereas much more heterogeneity was found in age patterns for female smokers by level of development. While smoking prevalence and risk-deleted DALY rates mostly decreased by sex and SDI quintile, population growth, population ageing, or a combination of both, drove rises in overall smoking-attributable DALYs in low-SDI to middle-SDI geographies between 2005 and 2015. Interpretation The pace of progress in reducing smoking prevalence has been heterogeneous across geographies, development status, and sex, and as highlighted by more recent trends, maintaining past rates of decline should not be taken for granted, especially in women and in low-SDI to middle-SDI countries. Beyond the effect of the tobacco industry and societal mores, a crucial challenge facing tobacco control initiatives is that demographic forces are poised to heighten smoking's global toll, unless progress in preventing initiation and promoting cessation can be substantially accelerated. Greater success in tobacco control is possible but requires effective, comprehensive, and adequately implemented and enforced policies, which might in turn require global and national levels of political commitment beyond what has been achieved during the past 25 years.Peer reviewe

    Mechanism of altruism (MOA) approach to blood donor recruitment and retention: a review and future directions

    Get PDF
    Background and Objectives. Why do people donate blood? Altruism is the common answer. However, altruism is a complex construct and to answer this question requires a systematic analysis of the insights from the biology, economics and psychology of altruism. I term this the Mechanism of Altruism (MOA) approach and apply it here to understanding blood donor motivation.. The answer also has enormous implications for the type of interventions we choose to adopt as a society. Methods. A review of the literature on altruism and blood donation. Results. A MOA approach so far shows that blood donors are a mixture of (1) warm-glow givers (donation is emotionally rewarding) and (2) reluctant altruists (cooperate rather than defect when free-riding is high). Donors also show ‘saintly sinning’ with the extra ‘moral currency’ form blood donation allowing them to be less generous in other contexts. The MOA suggests why financial incentives, in terms of gifts/lottery tickets, are effective and suggests a number of novel interventions for donor recruitment: ‘voluntary reciprocal altruism’ and ‘charitable incentivization’. It highlights the need for an intervention for both recipients to show their gratitude and society to celebrate blood donors and suggests a ‘Monument to Blood Donors’ will achieve this. The approach suggests a number of novel research questions into (1) donor self-selection effects, (2) conditional cooperation and (3) construct overlap with Theory of Planned Behaviour (e.g., affective attitudes and warm-glow). Conclusions. The MOA offers a powerful way to understand blood donor motivations around altruism and develop theoretically driven interventions

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods
    corecore