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Abstract

Background: New gas therapies using inert gases such as xenon and argon are being studied, which would
require chronically administered repeating doses. The pharmacokinetics of this type of administration has not
been addressed in the literature.

Methods: A physiologically based pharmacokinetics (PBPK) model for humans, pigs, mice, and rats has been
developed to investigate the unique aspects of the chronic administration of inert gas therapies. The absorption,
distribution, metabolism and excretion (ADME) models are as follows: absorption in all compartments is assumed
to be perfusion limited, no metabolism of the gases occurs, and excretion is only the reverse process of
absorption through the lungs and exhaled.

Results: The model has shown that there can be a residual dose, equivalent to constant administration, for
chronic repeated dosing of xenon in humans. However, this is not necessarily the case for small animals used in
pre-clinical studies.

Conclusions: The use of standard pharmacokinetics parameters such as area under the curve would be more
appropriate to assess the delivered dose of chronic gas administration than the gas concentration in the delivery
system that is typically reported in the scientific literature because species and gas differences can result in very
different delivered doses.
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Introduction
Gases with proven or exploratory medical use include
oxygen, hydrogen, carbon monoxide, carbon dioxide,
hydrogen sulfide, nitric oxide, nitrous oxide, xenon,
argon, helium and other noble gases [1–4]. In general,
the relatively fast wash-in and wash-out of gases, and
their application only for acute treatment (with the
exception of oxygen), has made pharmacokinetic (PK)
analysis of secondary importance such that it has not
been a focus of research or regulation. However, there
are notable exceptions. Lockwood and his colleagues
have developed experimental techniques and models for
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the PK analysis of gaseous anesthetics [5, 6]. Filser, Bolt
and their colleagues have presented an impressive series
of papers on the application of PK in the context of the
environmental toxicology of gas pollutants [7–12].
In recent years evidence has been accumulating to in-

dicate that certain inert or noble gases, existing as
mono-atomic gases with low chemical reactivity, never-
theless express biological activity. Numerous in vitro
and in vivo experiments have demonstrated intriguing
biological effects for xenon, argon and helium, with
neuro- and organo-protective properties as the most
clinically promising [4, 13]. Extensive research has fur-
ther revealed some of the underlying mechanisms and
include competitive antagonism at the NMDA/AMPA
receptor [14], anti-apoptotic properties (inhibition of
mitochondrial cytochrome c release) [15], activation of
pro-survival signaling pathways (increased expression
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Fig. 1 Schematic of the pharmacokinetic model, compartments and
gas species flows. The model does not consider the lung tissue per
se (except as part of the richly perfused tissue compartment), but
the gas volume within it
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of Bcl-2/Bcl-xL, inhibition of Bax) [16], MAPK regulation
(p38, ERK1/2) [17, 18] and potassium ion channels activa-
tion (KATP, TREK-1) [19, 20]. The preclinical models
suggest potential clinical benefit in indications such as
traumatic brain injury, ischemic or hemorrhagic stroke,
perinatal hypoxic-ischemic brain injury, coronary artery
bypass graft surgery, organ protection during transplant-
ation, chronic pain, and addiction [13, 21–23]. Any clinical
benefit, however, would require chronic (or repetitive)
administration of inert gases, in contrast to the currently
accepted acute, single administration for the induction
and maintenance of general anesthesia (e.g. xenon).
From a PK standpoint there are several issues that arise

concerning the development and future application of the
chronic administration of inert gases. For these reasons
we have developed a computational physiological based
pharmacokinetic (PBPK) model for inert gases primarily
based on the model of Lockwood [5]. The model was used
to investigate chronic administration of the noble gases
xenon and argon in terms of empirically determined
physiological PK parameters (i.e., partition coefficients),
species comparisons, and intersubject variability. These is-
sues will inevitably be important in moving from animal
models to clinical testing, toxicological testing, the devel-
opment of delivery devices, and the regulatory purview of
gas treatments. One particular aspect of methodology ad-
dressed herein is the definition of the dose itself. We use
PK variables to define the dose at the site of action,
whereas, the dose of a gas treatment is typically given as
the concentration of the inhaled gas.

Methods
A pharmacokinetic model principally following the one
described by Lockwood [5] was developed using the
Simbiology Toolkit of MATLAB (Mathworks, United
States). Simbiology provides a graphical environment
and programming tools to model, simulate, and analyze
PK applications. Specifically in this case, it allows for
simplified development, programming and debugging, of
the PK model including the numerical solver of the
resulting system of differential equations.
The model is described by the schematic shown in Fig. 1

and the data listed in Table 1. Regarding Fig. 1, it can be
discerned that gas therapy starts in the lung. The model
does not consider the lung tissue per se (except as part of
the richly perfused tissue compartment), but the gas vol-
ume within it. The extreme complexity of the lung and
the dynamics of respiration [24–27] are greatly simplified
following Lockwood in that the model does not take into
account the oscillatory nature of inhalation and exhalation
or details of ventilatory distribution. Thus the ventilatory
input is the minute volume, inspired tidal volume multi-
plied by the respiratory rate in breaths per minute.
Changes in minute volume can be modeled, but only at a
time scale that would include several breaths (minutes)
not during a breath (seconds). Morphological complexity
of the respiratory tract is accounted for by including a
component of dead space; that is gas that never reaches
the alveolar gas exchange region of the lung, is considered
as a gas bypass of 32.5 % of minute volume (i.e., 162.5 ml
of dead space and 500 ml tidal volume). The exhaled gas
compartment consists of 90 % alveolar gas and 10 %
inhaled gas to account for the complex mixing inherent in
real respiration. In terms of pulmonary circulation, 10 %
of the cardiac output was shunted past the lung without
gas exchange. Thus the equation for transfer from the al-
veolar gas to the arterial (oxygenated) blood in the lung is

Carteriallung ¼ 0:9� 0:9� AV � Cinhaledð Þ þ CO� Cvenousð Þ
COþ 0:9�AV

PCblood:gas

þ 0:1� Cvenous

ð1Þ

where AV is the alveolar ventilation (the inhaled tidal
volume less the dead space times the respiratory rate),
Cinhaled is the inhaled concentration, Cvenous is the



Table 1 Physiological data and partition coefficients used for
the model

Parameter Mouse Rat Pig Human
(Adult Male)

Body Weight (kg) 0.025 0.25 25 70

Minute Ventilation (l.min-1) 0.385 0.18 3.6 7.5

Alveolar Ventilation (l.min-1) 0.025 0.117 2.34 4.875

Cardiac Output (l.min-1) 0.017 0.083 2.060 6.0

Perfusion per compartment (as a fraction of Cardiac Output)

Fat (Richly perfused) 0.09 0.09 0.1747 0.04

Fat (Poorly perfused) NA NA NA 0.01

Liver 0.25 0.25 0.3052 0.26

Richly perfused tissue 0.415 0.484 0.1829 0.3303

Poorly perfused tissue NA NA 0.0553 0.01

Muscle 0.15 0.15 0.2523 0.24

Brain 0.095 0.026 0.0296 0.093

Volumes (fraction of Body Weight)

Arterial blood 0.0110 0.0167 0.018 0.0209

Venous blood 0.0331 0.050 0.042 0.0545

Lung blood 0.0049 0.0074 NA 0.00245

Fat (Richly perfused) 0.10 0.07 0.3 0.09

Fat (Poorly perfused) NA NA NA 0.09

Liver 0.055 0.04 0.0294 0.06

Richly perfused tissue 0.0454 0.0497 0.0697 0.0624

Poorly perfused tissue NA NA 0.1269 0.24

Muscle 0.66 0.676 0.4 0.44

Brain 0.0046 0.0003 0.004 0.0176

Partition coefficients for Xenon

Blood:gas 0.207 0.207 0.11 0.14

Fat:blood 6.2802 6.2802 11.8182 9.287

Liver:blood 0.7246 0.7246 1.3636 1.071

Richly perfused tissue:blood 0.6951 0.7229 1.3774 1.071

Poorly perfused tissue:blood 0.7246 0.7246 1.3636 1.071

Muscle:blood 0.7246 0.7246 1.3636 1.071

Brain:blood 1.1233 1.015 1.1233 1.123

Partition coefficients for Argon

Blood:gas 0.037 0.037 0.037 0.037

Fat:blood 4.1622 4.1622 4.1622 4.162

Liver:blood 0.7539 0.7539 0.7539 0.754

Richly perfused tissue:blood 1.0663 1.0323 1.0506 1.028

Poorly perfused tissue:blood 0.9987 0.9987 0.9987 0.999

Muscle:blood 0.7205 0.7205 0.7205 0.720

Brain:blood 0.6747 0.6747 0.6747 0.675
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concentration of the gas in the venous blood, CO is the
cardiac output, and PCblood:gas is the partition coefficient
between the gas phase and in solution in the blood.
Cinhaled in mol/L is related to the percentage by volume,
%gas (equivalent to the molar percentage), by the perfect
gas law.

Cinhaled ¼ Ptotal

RT
%gas
100

� �
ð2Þ

where R = 8 314.4621 Pa. L. mol− 1. K− 1 is the universal
perfect gas constant, the temperature considered at am-
bient is T = 298K and the total pressure is assumed to be
Ptotal = 1 atm = 1.01325 × 105Pa.
The cardiac output is apportioned to the tissue com-

partments. All exchange is based on the perfusion lim-
ited model that assumes the tissue and venous blood are
in equilibrium based on the partition coefficient for each
compartment using Equation 3.

Cvenous ¼ Ctissue

PCtissue:blood
ð3Þ

where Ctissue is the concentration in the tissue for the
compartment, and PCtissue:blood is the partition coefficient
for that tissue compartment and blood. The consequence
of this assumption is that all exchanges between gas and
blood, as well as blood and tissue compartments, are as-
sumed to occur instantaneously. The resulting differential
equation for the tissue compartment is

dCtissue

dt
¼

Qtissue � Carterial− Ctissue
PCtissue:blood

� �
Vtissue

ð4Þ

where Qtissue and Vtissue are the perfusion and volume for
the compartment, respectively, and Carterial is the concen-
tration in the arterial blood supplying the compartment.
One difference between our model and the Lockwood

model follows from the definition of compartments;
within Simbiology compartments must be defined in
terms of volume, whereas Lockwood’s compartments are
is in terms of mass [5]. Thus, assumed density values
were used to derive the compartment volume fractions
listed in Table 1. Other differences include the definition
of organ compartments such as the brain from the richly
perfused tissue compartment for some of our simula-
tions as shown in Fig. 1.
The numerical solution of the model, a system of

differential equations, was accomplished within Matlab
using the “ode15s” code; a quasi-constant step size im-
plementation in terms of backward differences of the
Klopfenstein-Shampine family of numerical differenti-
ation formulas [28, 29]. This method was efficient and
stable, as no simulations took more than a minute on a
computer workstation. A maximum step size of 0.5 s
was used for numerical purposes, though we emphasize
that the model results cannot be applied to this time
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resolution. A convergence test based the parameter area
under the curve (AUC, to be explained below) resulted in
a value within 0.01 % of the value for a time step of 0.1 s.
The physiological data for humans in Lockwood were

extrapolated to pigs and rats based on data from several
references [5, 12, 30–32]. The resulting parameters are
compiled in Table 1. Note that detailed data such as a
breakdown between rich and poorly perfused fat were
not found for the other species.
Another key physical/chemical parameter is the spe-

cific partition coefficients for each gas in each compart-
ment for each species. These data are not complete in
the literature, thus requiring extrapolation from correla-
tions from known data for other gases; for example,
compartment:blood partition coefficients were deter-
mined from known fat:blood values using the linear
correlations for organs described by Fiserova-Bergerova
and Diaz [33]. We developed linear correlations for the
vessel rich and vessel poor tissue compartment by mak-
ing similar correlations using the data for six anesthetic
gases analyzed in Lockwood [5]. For argon Ostwald solu-
bility coefficients are available for blood, 0.037 [34], and
for olive oil, 0.154 [35]. The solubility coefficient is
equivalent to the partition coefficient if one of the com-
partments are in the gas phase [36]; in our model this is
the case for the lung compartment. Furthermore, due
to the scarcity of data, solubility in olive oil is used in
lieu of fat [37]. The relevant fat:blood partition coeffi-
cient for argon is found by the ratio of (olive oil:gas)/
(blood:gas), or 4.162.
The dose of a gas treatment is typically given as the

concentration (molar, by volume, or by parts) of the
inhaled gas, to the point that it is rare to find the use of
classic PK parameters to assess the dose. Research based
on inhaled dose as concentration of administered gas
does not take into account complex physiological differ-
ences between species. Thus we use variables such as
Cmax the peak concentration for a particular compart-
ment, t1/2, the time necessary to reduce the concentra-
tion from Cmax by half, and AUC or the area under the
curve, the integral of concentration through time that
reflects the total exposure of the compartment to inter-
pret the inhaled dose concentrations [38]. These data
are derived (e.g., using numerical integration for AUC)
from the discrete concentration data calculated at each
time step for each compartment. tmax, the time neces-
sary to reach Cmax, is generally at the end of administra-
tion. However, due to a fast rise followed by slower
uptake in fat, tmax is calculated as four times the expo-
nential time constant estimated from the elimination
time, t1/2.
The physiological parameters for each species are given

in Table 1. The human is based on a 70 kg adult male as
described by Lockwood [5]. Intersubject variability can be
assessed by using scaling of compartment volumes, venti-
latory parameters, and cardiac output and their distribu-
tions based on size, gender and age. For example, the
percentage of fat as a function of body weight and gender
is on average 13.5 % for men and 26.5 % for women [39].
It was assumed that the relative amounts of highly and
poorly perfused fat and their perfusion were the same as
the base human model [5]. Adaptations for arterial blood
volume [40], cardiac output [41], and ventilatory parame-
ters [42] were made based on correlations found in the
literature.

Results
Validation is an important step in the use of any model.
Unfortunately; in vivo measurements of noble gas con-
centration are difficult; and therefore, quite rare. The
first comparison performed used data calculated by
Lockwood [5] for xenon uptake as shown in Fig. 2. This
is a validation of the parameters, system of equations,
and solution techniques employed. The second valid-
ation comparison (shown in Fig. 3) was made from
in vivo measurements of xenon concentration in arterial
and mixed venous blood using gas chromatography-
mass spectrometry of the head space gas over samples
taken during the wash-in of xenon into eight pigs [43].
For this comparison compartment volumes are esti-
mated because the weight of each pig was not available.
Pharmacokinetic results for exposure of 50 % xenon

for one hour to an adult male, a pig and a rat are given
in Table 2. Similar results are also given for 50 % argon
for one hour in the human model.
Graphically, the results of a one hour exposure to

xenon are given in Fig. 4a in terms of arterial blood con-
centration and xenon concentration in the two fat com-
partments that have different perfusion rates. The very
different timing of absorption rates is evident between
the compartments. These differences are also apparent
in the example of chronic, or repeated, dosing shown in
Fig. 4b. In this case the one-hour exposure to 50 %
xenon is repeated once per day for 10 days. Note that
the peak concentration and the residual concentration,
the concentration just before the next exposure, are rising
in the fat compartment over the three days shown in the
figure. There are no apparent differences each day in the
arterial blood concentration. However, in Fig. 4c residual
concentrations for arterial blood and poorly perfused fat
are shown using different scales, where it is clear that the
residual concentration in both compartments increases
for about 5 days before reaching a plateau.
In Fig. 5 are shown the plots of arterial blood concen-

tration during exposure to 50 % xenon in the adult hu-
man male, rat (the mouse, not shown for clarity, is close
to the rat) and pig models. The human and pig are simi-
lar while the concentration in the rat is almost double.
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Table 2 Pharmacokinetic results for a 60 min exposure to 50 %
xenon or argon mixture with oxygen

Gas AUC
(mol.min/l)

Cmax

(mol/l)
t½
(min)

tmax

(min)Species

Compartment

Xenon Human

Blood (venous) 1.31E-01 2.54E-03 3.64 42.0

Blood (arterial) 1.61E-01 2.78E-03 0.21 2.4

Liver 1.64E-01 2.98E-03 2.87 33.1

Muscle 1.10E-01 2.73E-03 15.83 182.7

Fat (Richly perfused) 1.66E-01 5.46E-03 29.12 336.1

Fat (Poorly perfused) 4.41E-02 1.49E-03 30.42 351.1

Richly perfused tissue 1.64E-01 2.94E-03 2.40 27.6

Poorly perfused tissue 1.58E-03 5.23E-04 29.44 339.8

Brain 1.73E-01 3.12E-03 2.52 29.1

Xenon Pig

Blood (venous) 8.63E-02 1.77E-03 4.62 53.3

Blood (arterial) 1.26E-01 2.16E-03 0.19 2.2

Liver 1.67E-01 2.95E-03 1.59 18.4

Muscle 1.03E-01 2.61E-03 16.91 195.2

Fat 1.64E-01 5.37E-03 28.98 334.5

Richly perfused tissue 1.54E-01 2.97E-03 5.31 61.3

Poorly perfused tissue 8.42E-02 2.30E-03 20.40 235.4

Brain 1.37E-01 2.43E-03 1.79 20.7

Xenon Rat

Blood (venous) 9.84E-01 3.41E-03 0.31 3.6

Blood (arterial) 1.20E + 00 4.05E-03 0.05 0.6

Liver 8.66E-01 2.93E-03 0.35 4.1

Muscle 2.46E-01 1.14E-03 2.29 26.4

Fat 1.52E + 00 7.15E-03 2.39 27.6

Richly perfused tissue 8.74E-01 2.94E-03 0.26 3.0

Brain 1.22E + 00 4.11E-03 0.09 1.0

Argon Human

Blood (venous) 3.74E-02 7.02E-04 2.71 31.3

Blood (arterial) 4.41E-02 7.49E-04 0.18 2.1

Liver 3.21E-02 5.64E-04 1.89 21.8

Muscle 2.37E-02 5.26E-04 11.25 129.9

Fat (Richly perfused) 4.18E-02 1.30E-03 26.55 306.4

Fat (Poorly perfused) 1.19E-02 3.93E-04 29.48 340.3

Richly perfused tissue 4.36E-02 7.70E-04 2.07 23.9

Poorly perfused tissue 4.35E-03 1.42E-04 28.93 333.8

Brain 2.90E-02 5.05E-04 1.46 16.8
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Also note that the timing is almost ten times faster in
the rat than in the larger species as reflected in the data
given in Table 2.
Results from simulations of one-hour exposures to

50 % xenon and argon in the human model are shown
in Fig. 6 in the form of arterial blood concentrations as a
function of time. Note, that the equivalent delivered
doses of 50 % for one hour result in very different phar-
macokinetic doses (e.g., see the AUC for the brain for
these two cases in Table 2: 0.173 for xenon and 0.029 for
argon).
An example of the effect of intersubject variability on

pharmacokinetics of gases is shown in Fig. 7. We note
that in general, Cmax is determined by the partition co-
efficients, such that there is very little intersubject vari-
ability for this parameter. However, the kinetics are a
function of the relative volume distribution between the
compartments. Thus, there is significant variation in t1/2
as a function of weight as shown in this plot of for adult
males who have received a 50 % exposure to xenon for
one hour.

Discussion
A pharmacokinetic model has been presented for the
chronic administration with repeated dosing of inert,
noble gases (xenon and argon) to humans, pigs and rats.
The absorption, distribution, metabolism and excretion
(ADME) modeled are very simple; absorption in all com-
partments is assumed to be perfusion limited, the gases
are not metabolized, and excretion is only by the reverse
process of absorption through the lungs and exhaled.
The model was validated by comparison to published

data; to xenon uptake data in humans from a different
model [5] and from experimental measurements of
xenon blood concentrations during wash-in to pigs [43].
Both comparisons (Figs. 2 and 3) show that the current
model can accurately determine the rate of disposition
of the gas in the body. We note that this accuracy is
achieved in spite of the fact that the model does not ac-
count for mixing or circulation in the arterial blood
compartment.
Based on the example of a one-hour administration of

xenon per day, the key physiological results show that
fat acts as a reservoir for gas storage, such that there is a
residual dose that is equivalent to a continuous expos-
ure. The residual dose, the concentration just before the
re-administration, is at a relatively low level (equivalent
to breathing 0.01 % xenon gas composition) but this is
still about a thousand times greater than ambient expos-
ure (8.7x10-6 % of xenon in the atmosphere) in humans.
It is important for preclinical testing that the clearance
is much faster in small animals (about 10 times faster,
see t1/2 for rats in Table 2) such that there is essentially
no residual dose between exposures for the same
chronic application example presented for humans in
Fig. 4b and c. Thus, preclinical studies with small ani-
mals might not indicate benefits or the negative effects
associated with these therapies that occur after adminis-
tration of the gas. However, preclinical studies could be
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designed to include a residual dose to mimic the effect
of gas storage in fatty tissue that occurs for humans.
Note that argon differs from xenon in that the residual
dose is not important because the baseline atmospheric
concentration is 1 %.
Another important aspect of interspecies variability is

the different tissue solubility for each gas among animal
species as indicated by the partition coefficients listed in
Table 1 and the arterial blood concentration plots shown
in Fig. 5. Furthermore, these differences are expressed in
the differences in dose for each species in each compart-
ment listed in Table 2. The key message is that the dose
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Fig. 6 Variation of uptake with gas type; comparison of arterial blood conc
to a male adult human
delivered to the patient, in this example 50 % xenon for
one hour, will be different at the site of action for each
species. Changes in concentration can readily be imple-
mented using Equation 2, including hyperbaric condi-
tions. The most important and direct effect of changes
in concentration are proportional changes in saturation
concentrations.
To expand on the point of characterizing experiments

with the true dose (i.e., the AUC at the site of action)
the gas delivery system must be considered. Due to the
physics related to filling the dead volume or leaks in the
delivery system it is virtually impossible to immediately
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Fig. 7 An example of intersubject variability; the variation of t1/2 for the brain compartment for administration of xenon as a function of weight
for adult males. The variation is expressed as a percentage of the value for a 70 kg individual
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apply the inhaled dose as has been modeled herein.
Thus the wash-in of gas into animal boxes [44] and
ventilators [45] should be taken into account to deter-
mine the true AUC and is the subject of future work
for our team.
The measure of intersubject variability in this ADME

PBPK model only accounts for physiological parameters,
it does not take into account pharmacological variations
that are also known to occur due to age and gender
(e.g., for xenon anesthesia [46]).
There are several aspects of the model that can be

improved. The basic, steady state model for respiration
can be improved to better account for the complex dis-
tribution of gas concentration that exists in real lungs
(for example oxygen [27] and nitric oxide [47] uptake
have been examined in the literature). There may be
exceptions to the perfusion limited assumption used in
the model. For example, studies in volunteers have
shown non-uniform distributions of xenon in blood as
a function of hemocrit [48] and in the brain [49] using
computed tomography imaging. Another study in sheep
[50] has shown that a PK model with direct diffusion
between brain regions was better for fitting the experi-
mental data for the absorption of helium. In principle,
the model can readily be extended to other gases where
metabolism does not occur or is insignificant, krypton,
neon, helium, nitrous oxide, and nitrogen; the last use of
the model would be to investigate the di-nitrogenation
process that is necessary to optimize the delivery of gases
using recirculating systems [45]. However, all the neces-
sary partition coefficients are not readily available in the
literature for all compartments, animal species, and gases.
Certainly, more experimental data of pharmacokinetics
with pharmacodynamics are needed for the development
of optimized gas therapies.
Conclusions
An ADME PBPK model has been developed to investi-
gate the unique aspects of the chronic administration of
noble gas therapies. The model has shown that there
can be a residual dose, equivalent to constant adminis-
tration, for chronic repeated dosing of xenon in humans.
However, this is not necessarily the case for small ani-
mals used in pre-clinical studies. The use of standard PK
parameters such as AUC would be more appropriate to
assess the delivered dose than the gas concentration in
the delivery system that is typically cited.
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