172 research outputs found

    Development of biotissue training models for anastomotic suturing in pancreatic surgery

    Get PDF
    Background: Anastomotic suturing is the Achilles heel of pancreatic surgery. Especially in laparoscopic and robotically assisted surgery, the pancreatic anastomosis should first be trained outside the operating room. Realistic training models are therefore needed. Methods: Models of the pancreas, small bowel, stomach, bile duct, and a realistic training torso were developed for training of anastomoses in pancreatic surgery. Pancreas models with soft and hard tex-tures, small and large ducts were incrementally developed and evaluated. Experienced pancreatic sur-geons (n = 44) evaluated haptic realism, rigidity, fragility of tissues, and realism of suturing and knot tying. Results: In the iterative development process the pancreas models showed high haptic realism and highest realism in suturing (4.6 & PLUSMN; 0.7 and 4.9 & PLUSMN; 0.5 on 1-5 Likert scale, soft pancreas). The small bowel model showed highest haptic realism (4.8 & PLUSMN; 0.4) and optimal wall thickness (0.1 & PLUSMN; 0.4 on -2 to +2 Likert scale) and suturing behavior (0.1 & PLUSMN; 0.4). The bile duct models showed optimal wall thickness (0.3 & PLUSMN; 0.8 and 0.4 & PLUSMN; 0.8 on -2 to +2 Likert scale) and optimal tissue fragility (0 & PLUSMN; 0.9 and 0.3 & PLUSMN; 0.7). Conclusion: The biotissue training models showed high haptic realism and realistic suturing behavior. They are suitable for realistic training of anastomoses in pancreatic surgery which may improve patient outcomes.Surgical oncolog

    2D characterization of near-surface V P/V S: surface-wave dispersion inversion versus refraction tomography

    No full text
    International audienceThe joint study of pressure (P-) and shear (S-) wave velocities (Vp and Vs ), as well as their ratio (Vp /Vs), has been used for many years at large scales but remains marginal in near-surface applications. For these applications, and are generally retrieved with seismic refraction tomography combining P and SH (shear-horizontal) waves, thus requiring two separate acquisitions. Surface-wave prospecting methods are proposed here as an alternative to SH-wave tomography in order to retrieve pseudo-2D Vs sections from typical P-wave shot gathers and assess the applicability of combined P-wave refraction tomography and surface-wave dispersion analysis to estimate Vp/Vs ratio. We carried out a simultaneous P- and surface-wave survey on a well-characterized granite-micaschists contact at Ploemeur hydrological observatory (France), supplemented with an SH-wave acquisition along the same line in order to compare Vs results obtained from SH-wave refraction tomography and surface-wave profiling. Travel-time tomography was performed with P- and SH- wave first arrivals observed along the line to retrieve Vtomo p and Vtomo s models. Windowing and stacking techniques were then used to extract evenly spaced dispersion data from P-wave shot gathers along the line. Successive 1D Monte Carlo inversions of these dispersion data were performed using fixed Vp values extracted from Vtomo p the model and no lateral constraints between two adjacent 1D inversions. The resulting 1D Vsw s models were then assembled to create a pseudo-2D Vsw s section, which appears to be correctly matching the general features observed on the section. If the pseudo-section is characterized by strong velocity incertainties in the deepest layers, it provides a more detailed description of the lateral variations in the shallow layers. Theoretical dispersion curves were also computed along the line with both and models. While the dispersion curves computed from models provide results consistent with the coherent maxima observed on dispersion images, dispersion curves computed from models are generally not fitting the observed propagation modes at low frequency. Surface-wave analysis could therefore improve models both in terms of reliability and ability to describe lateral variations. Finally, we were able to compute / sections from both and models. The two sections present similar features, but the section obtained from shows a higher lateral resolution and is consistent with the features observed on electrical resistivity tomography, thus validating our approach for retrieving Vp/Vs ratio from combined P-wave tomography and surface-wave profiling

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction
    • 

    corecore