197 research outputs found

    Software Development Support for Shared Sensing Infrastructures: A Generative and Dynamic Approach

    Get PDF
    International audienceSensors networks are the backbone of large sensing infras-tructures such as Smart Cities or Smart Buildings. Classical approaches suffer from several limitations hampering developers' work (e.g., lack of sensor sharing, lack of dynamicity in data collection policies, need to dig inside big data sets, absence of reuse between implementation platforms). This paper presents a tooled approach that tackles these issues. It couples (i) an abstract model of developers' requirements in a given infrastructure to (ii) timed automata and code generation techniques, to support the efficient deployment of reusable data collection policies on different infrastructures. The approach has been validated on several real-world scenarios and is currently experimented on an academic campus

    The scintillation and ionization yield of liquid xenon for nuclear recoils

    Get PDF
    XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signal (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield \leff and the absolute ionization yield Q_y, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of \leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our \leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is 4 keV. A knowledge of the ionization yield \Qy is necessary to establish the trigger threshold of the experiment. The ionization yield \Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.Comment: 8 pages, 9 figures. To be published in Nucl. Instrum. Methods

    CO emission in distant galaxies on and above the main sequence

    Get PDF
    We present the detection of multiple carbon monoxide CO line transitions with ALMA in a few tens of infrared-selected galaxies on and above the main sequence at z = 1.1−1.7. We reliably detected the emission of CO (5−4), CO (2−1), and CO (7−6)+[C I](3P2 − 3P1) in 50, 33, and 13 galaxies, respectively, and we complemented this information with available CO (4 − 3) and [C I](3P1 − 3P0) fluxes for part of the sample, and by modeling of the optical-to-millimeter spectral energy distribution. We retrieve a quasi-linear relation between LIR and CO (5 − 4) or CO (7 − 6) for main-sequence galaxies and starbursts, corroborating the hypothesis that these transitions can be used as star formation rate (SFR) tracers. We find the CO excitation to steadily increase as a function of the star formation efficiency, the mean intensity of the radiation field warming the dust (hUi), the surface density of SFR (ÎŁSFR), and, less distinctly, with the distance from the main sequence (∆MS). This adds to the tentative evidence for higher excitation of the CO+[C I] spectral line energy distribution (SLED) of starburst galaxies relative to that for main-sequence objects, where the dust opacities play a minor role in shaping the high-J CO transitions in our sample. However, the distinction between the average SLED of upper main-sequence and starburst galaxies is blurred, driven by a wide variety of intrinsic shapes. Large velocity gradient radiative transfer modeling demonstrates the existence of a highly excited component that elevates the CO SLED of high-redshift main-sequence and starbursting galaxies above the typical values observed in the disk of the Milky Way. This excited component is dense and it encloses ∌50% of the total molecular gas mass in main-sequence objects. We interpret the observed trends involving the CO excitation as to be mainly determined by a combination of large SFRs and compact sizes, as a large ÎŁSFR is naturally connected with enhanced dense molecular gas fractions and higher dust and gas temperatures, due to increasing ultraviolet radiation fields, cosmic ray rates, as well as dust and gas coupling. We release the full data compilation and the ancillary information to the community

    Design and Performance of the XENON10 Dark Matter Experiment

    Full text link
    XENON10 is the first two-phase xenon time projection chamber (TPC) developed within the XENON dark matter search program. The TPC, with an active liquid xenon (LXe) mass of about 14 kg, was installed at the Gran Sasso underground laboratory (LNGS) in Italy, and operated for more than one year, with excellent stability and performance. Results from a dark matter search with XENON10 have been published elsewhere. In this paper, we summarize the design and performance of the detector and its subsystems, based on calibration data using sources of gamma-rays and neutrons as well as background and Monte Carlo simulations data. The results on the detector's energy threshold, energy and position resolution, and overall efficiency show a performance that exceeds design specifications, in view of the very low energy threshold achieved (<10 keVr) and the excellent energy resolution achieved by combining the ionization and scintillation signals, detected simultaneously

    Sex Segregation and Salary Structure in Academia

    Full text link
    This article reports a study of aggregate unit salary levels, within a major research university. We analyze these salary levels, as they are influenced by unit sex composition, and modified by unit attainment levels—where unit refers to the departments, colleges and schools, and other academic divisions of the university. We investigate three central issues of sex and salary, previously overlooked in salary studies of academic employees: Do high proportions of women depress men's unit salary levels ("competition" hypothesis)? Are women's salary levels higher in male-dominated, and lower in female-dominated, units ("concentration" hypothesis)? Are men salary-compensated for working with women ("compensation" hypothesis)? The findings support none of these hypotheses. Rather, the relationship between unit sex composition and salary rests upon the connection between units' composition and attainment levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69126/2/10.1177_073088848100800103.pd

    Dynamic contrast-enhanced CT compared with positron emission tomography CT to characterise solitary pulmonary nodules : the SPUtNIk diagnostic accuracy study and economic modelling

    Get PDF
    Background Current pathways recommend positron emission tomography–computerised tomography for the characterisation of solitary pulmonary nodules. Dynamic contrast-enhanced computerised tomography may be a more cost-effective approach. Objectives To determine the diagnostic performances of dynamic contrast-enhanced computerised tomography and positron emission tomography–computerised tomography in the NHS for solitary pulmonary nodules. Systematic reviews and a health economic evaluation contributed to the decision-analytic modelling to assess the likely costs and health outcomes resulting from incorporation of dynamic contrast-enhanced computerised tomography into management strategies. Design Multicentre comparative accuracy trial. Setting Secondary or tertiary outpatient settings at 16 hospitals in the UK. Participants Participants with solitary pulmonary nodules of ≄ 8 mm and of ≀ 30 mm in size with no malignancy in the previous 2 years were included. Interventions Baseline positron emission tomography–computerised tomography and dynamic contrast-enhanced computer tomography with 2 years’ follow-up. Main outcome measures Primary outcome measures were sensitivity, specificity and diagnostic accuracy for positron emission tomography–computerised tomography and dynamic contrast-enhanced computerised tomography. Incremental cost-effectiveness ratios compared management strategies that used dynamic contrast-enhanced computerised tomography with management strategies that did not use dynamic contrast-enhanced computerised tomography. Results A total of 380 patients were recruited (median age 69 years). Of 312 patients with matched dynamic contrast-enhanced computer tomography and positron emission tomography–computerised tomography examinations, 191 (61%) were cancer patients. The sensitivity, specificity and diagnostic accuracy for positron emission tomography–computerised tomography and dynamic contrast-enhanced computer tomography were 72.8% (95% confidence interval 66.1% to 78.6%), 81.8% (95% confidence interval 74.0% to 87.7%), 76.3% (95% confidence interval 71.3% to 80.7%) and 95.3% (95% confidence interval 91.3% to 97.5%), 29.8% (95% confidence interval 22.3% to 38.4%) and 69.9% (95% confidence interval 64.6% to 74.7%), respectively. Exploratory modelling showed that maximum standardised uptake values had the best diagnostic accuracy, with an area under the curve of 0.87, which increased to 0.90 if combined with dynamic contrast-enhanced computerised tomography peak enhancement. The economic analysis showed that, over 24 months, dynamic contrast-enhanced computerised tomography was less costly (ÂŁ3305, 95% confidence interval ÂŁ2952 to ÂŁ3746) than positron emission tomography–computerised tomography (ÂŁ4013, 95% confidence interval ÂŁ3673 to ÂŁ4498) or a strategy combining the two tests (ÂŁ4058, 95% confidence interval ÂŁ3702 to ÂŁ4547). Positron emission tomography–computerised tomography led to more patients with malignant nodules being correctly managed, 0.44 on average (95% confidence interval 0.39 to 0.49), compared with 0.40 (95% confidence interval 0.35 to 0.45); using both tests further increased this (0.47, 95% confidence interval 0.42 to 0.51). Limitations The high prevalence of malignancy in nodules observed in this trial, compared with that observed in nodules identified within screening programmes, limits the generalisation of the current results to nodules identified by screening. Conclusions Findings from this research indicate that positron emission tomography–computerised tomography is more accurate than dynamic contrast-enhanced computerised tomography for the characterisation of solitary pulmonary nodules. A combination of maximum standardised uptake value and peak enhancement had the highest accuracy with a small increase in costs. Findings from this research also indicate that a combined positron emission tomography–dynamic contrast-enhanced computerised tomography approach with a slightly higher willingness to pay to avoid missing small cancers or to avoid a ‘watch and wait’ policy may be an approach to consider. Future work Integration of the dynamic contrast-enhanced component into the positron emission tomography–computerised tomography examination and the feasibility of dynamic contrast-enhanced computerised tomography at lung screening for the characterisation of solitary pulmonary nodules should be explored, together with a lower radiation dose protocol. Study registration This study is registered as PROSPERO CRD42018112215 and CRD42019124299, and the trial is registered as ISRCTN30784948 and ClinicalTrials.gov NCT02013063

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
    • 

    corecore