340 research outputs found

    Investigating the Origin of Chlorohydrocarbons Detected by the Sample Analysis at Mars (SAM) Instrument at Rocknest

    Get PDF
    The search for organic compounds on Mars, including molecules of either abiotic or biological origin is one of the key goals of the Mars Science Laboratory (MSL) mission. Previously the Viking and Phoenix Lander missions searched for organic compounds, but did not find any definitive evidence of martian organic material in the soils. The Viking pyrolysis gas chromatography mass spectrometry (GCMS) instruments did not detect any organic compounds of martian or exogenous origin above a level of a few parts-per-billion (ppb) in the near surface regolith at either landing site [1]. Viking did detect chloromethane and dichloromethane at pmol levels (up to 40 ppb) after heating the soil samples up to 500 C (Table 1), although it was originally argued that the chlorohydrocarbons were derived from cleaning solvents used on the instrument hardware, and not from the soil samples themselves [1]. More recently, it was suggested that the chlorohydrocarbons detected by Viking may have been formed by oxidation of indigenous organic matter during pyrolysis of the soil in the presence of perchlorates [2]. Although it is unknown if the Viking soils contained perchlorates, Phoenix did reveal relatively high concentrations (~0.6 wt%) of perchlorate salt in the icy regolith [3], therefore, it is possible that the chlorohydrocarbons detected by Viking were produced, at least partially, during the experiments [2,4]. The Sample Analysis at Mars (SAM) instrument suite on MSL analyzed the organic composition of the soil at Rocknest in Gale Crater using a combination of pyrolysis evolved gas analysis (EGA) and GCMS. One empty cup procedural blank followed by multiple EGA-GCMS analyses of the Rocknest soil were carried out. Here we will discuss the results from these SAM measurements at Rocknest and the steps taken to determine the source of the chlorohydrocarbons

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Troposphere-to-mesosphere microphysics of carbon dioxide ice clouds in a Mars Global Climate Model

    Get PDF
    We have implemented full CO ice cloud microphysics into the LMD Mars Global Climate Model (MGCM) and we have conducted the first global simulations. The microphysical model implementation follows the modal scheme used for water ice cloud microphysics in the MGCM, but includes specific aspects that need to be accounted for when dealing with CO ice clouds. These include nucleation of CO on water ice crystals and CO condensation theory adapted for the Martian conditions. The model results are compared to available observations globally, and separately for polar regions and equatorial mesosphere. The observed seasonal and latitudinal variability of the CO ice clouds is in general reproduced. The polar regions are covered by CO ice clouds during the winter as observed. Instead of forming only in the lowest 10–15 km of the atmosphere, they extend up to several tens of kilometers above the surface in the model, dictated by the modeled temperature structure. We have also quantified the contribution of the cloud microphysics to the surface CO ice deposits. Snowfall from these clouds contributes up to 10% of the atmosphere–surface ice flux in the polar regions in our simulations, in the range that has been indirectly deduced from observations. In the mesosphere, notable amounts of CO ice clouds form only when water ice crystals are used as condensation nuclei in addition to dust particles, and their spatial distribution is in agreement with observations. The mesospheric temperature structure, dominated by tides, dictates the longitudinal and seasonal distribution of these clouds. The seasonal and local time variations of the clouds are not fully reproduced by the model. There is a long pause in CO ice cloud formation in the model around the aphelion season, but clouds have been observed during this period, although with a lower apparition frequency. Modeled mesospheric clouds form mainly during the night and in the morning, whereas during the daytime, when most of the cloud observations have been made, the model rarely predicts clouds. These discrepancies could be explained by the strong dependence of the cloud formation process on mesospheric temperatures that are themselves challenging to reproduce and sensitive to the MGCM processes and parameters. The rare possibilities for nighttime observations might also bias the observational climatologies towards daytime detections. Future developments of the model consist in the inclusion of a possible exogenous condensation nucleus source in the mesosphere and the radiative effect of CO ice clouds. © 2022 Elsevier Inc. All rights reserved.This paper presents the results of ten years of development that has been supported by funding from several sources. We thank the Agence National de la Recherche for funding (project MECCOM, ANR-18-CE31-0013). We are also grateful for the financial support by the LabEx (Laboratoire d’Excellence) ESEP, by the French space agency CNES and the European Space Agency ESA. We acknowledge the support of the French national planetology programme (PNP) as well. F.G.-G. is funded by the Spanish Ministerio de Ciencia, InnovaciĂłn y Universidades, the Agencia Estatal de InvestigaciĂłn and EC FEDER funds under project RTI2018-100920-J-I00, and acknowledges financial support from the State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa” award to the Instituto de AstrofĂ­sica de AndalucĂ­a (SEV-2017-0709). This work was performed using HPC computing resources from GENCI-CINES (Grant 2021-A0100110391), and resources at the ESPRI mesocentre of the IPSL institute .Peer reviewe

    Awareness and use of intertrochanteric osteotomies in current clinical practice. An international survey

    Get PDF
    Current literature shows that intertrochanteric osteotomies can produce excellent results in selected hip disorders in specific groups of patients. However, it appears that this surgical option is considered an historical one that has no role to play in modern practice. In order to examine current awareness of and views on intertrochanteric osteotomies among international hip surgeons, an online survey was carried out. The survey consisted of a set of questions regarding current clinical practice and awareness of osteotomies. The second part of the survey consisted of five clinical cases and sought to elicit views on preoperative radiological investigations and preferred (surgical) treatments. The results of our survey showed that most of these experts believe that intertrochanteric osteotomies should still be performed in selected cases. Only 56% perform intertrochanteric osteotomies themselves and of those, only 11% perform more than five per year. The responses to the cases show that about 30–40% recommend intertrochanteric osteotomies in young symptomatic patients. This survey shows that the role of intertrochanteric osteotomies is declining in clinical practice
    • 

    corecore