95 research outputs found

    Hypoxia and Extracellular Matrix Proteins Influence Angiogenesis and Lymphangiogenesis in Mouse Embryoid Bodies

    Get PDF
    Regulatory mechanisms for angiogenesis are relatively well established compared to lymphangiogenesis. Few studies have shown that a combination of vascular endothelial growth factor VEGF-A/C with hypoxia or collagen matrix promotes lymphatic structures along with blood vessel development in mouse embryoid bodies (EB). In this study we tested the hypothesis that while hypoxia combined with prolonged VEGF-A/C treatment would induce early lymphangiogenesis in addition to angiogenesis in mouse EBs, under similar conditions specific extracellular matrix (ECM) proteins would promote lymphatic vessel-like structures over angiogenesis. EBs were subjected to four conditions and were maintained under normoxia and hypoxia (21% and 2.6% O2, respectively) with or without VEGF-A/C. Microarray analyses of normoxic and hypoxic EBs, and immunofluorescence data showed very low expression of early lymphatic endothelial cell (LEC) markers, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), and prospero-related homeobox 1 (Prox1) at early time points. Double immunofluorescence using MECA-32 and Prox1/LYVE1 demonstrated that combined hypoxia and VEGF-A/C treatment promoted formation of blood vessel-like structures, whereas only Prox1+/LYVE1+ LECs were detected in EBs at E22.5. Furthermore, EBs were grown on laminin or collagen-I coated plates and were subjected to the four treatments as described above. Results revealed that LECs in EBs at E36.5 attached better to collagen-I, resulting in an organized network of lymphatic vessel-like structures as compared to EBs grown on laminin. However, blood vessel-like structures were less favored under these same conditions. Collectively, our data demonstrate that hypoxia combined with growth factors promotes angiogenesis, whereas combination of these conditions with specific ECM proteins favors lymphangiogenesis processes in mouse EBs

    Mechanical and kinetic effects of shortened tropomyosin reconstituted into myofibrils

    Get PDF
    The effects of tropomyosin on muscle mechanics and kinetics were examined in skeletal myofibrils using a novel method to remove tropomyosin (Tm) and troponin (Tn) and then replace these proteins with altered versions. Extraction employed a low ionic strength rigor solution, followed by sequential reconstitution at physiological ionic strength with Tm then Tn. SDS-PAGE analysis was consistent with full reconstitution, and fluorescence imaging after reconstitution using Oregon-green-labeled Tm indicated the expected localization. Myofibrils remained mechanically viable: maximum isometric forces of myofibrils after sTm/sTn reconstitution (control) were comparable (~84%) to the forces generated by non-reconstituted preparations, and the reconstitution minimally affected the rate of isometric activation (kact), calcium sensitivity (pCa50), and cooperativity (nH). Reconstitutions using various combinations of cardiac and skeletal Tm and Tn indicated that isoforms of both Tm and Tn influence calcium sensitivity of force development in opposite directions, but the isoforms do not otherwise alter cross-bridge kinetics. Myofibrils reconstituted with Δ23Tm, a deletion mutant lacking the second and third of Tm’s seven quasi-repeats, exhibited greatly depressed maximal force, moderately slower kact rates and reduced nH. Δ23Tm similarly decreased the cooperativity of calcium binding to the troponin regulatory sites of isolated thin filaments in solution. The mechanisms behind these effects of Δ23Tm also were investigated using Pi and ADP jumps. Pi and ADP kinetics were indistinguishable in Δ23Tm myofibrils compared to controls. The results suggest that the deleted region of tropomyosin is important for cooperative thin filament activation by calcium

    Pharmacokinetic aspects of retinal drug delivery

    Get PDF
    Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.Peer reviewe

    Embryonic Stem Cells: New Possible Therapy for Degenerative Diseases That Affect Elderly People

    Full text link
    The capacity of embryonic stem (ES) cells for virtually unlimited self renewal and differentiation has opened up the prospect of widespread applications in biomedical research and regenerative medicine. The use of these cells would overcome the problems of donor tissue shortage and implant rejection, if the cells are made immunocompatible with the recipient. Since the derivation in 1998 of human ES cell lines from preimplantation embryos, considerable research is centered on their biology, on how differentiation can be encouraged toward particular cell lineages, and also on the means to enrich and purify derivative cell types. In addition, ES cells may be used as an in vitro system not only to study cell differentiation but also to evaluate the effects of new drugs and the identification of genes as potential therapeutic targets. This review will summarize what is known about animal and human ES cells with particular emphasis on their application in four animal models of human diseases. Present studies of mouse ES cell transplantation reveal encouraging results but also technical barriers that have to be overcome before clinical trials can be considered

    Assessment of Vegetation Index in Selected Protected Areas of Southern Western Ghats, Kerala, India

    Get PDF
    The Western Ghats Forest ecosystem is known for its abundance of flora and is impacted primarily by habitat degradation. The Normalized Difference Vegetation Index (NDVI) was used in this study to assess the vegetation changes over time in three protected areas of Western Ghats, including Idukki Wildlife Sanctuary, Eravikulam National Park, and Parambikulam WildlifeSanctuary, over a 15-year interval (1988-2003 and 2003-2018) using Landsat datasets and ArcGIS 10.6. The result shows that the vegetation in these three protected areas declined dramatically during a decade (1988-2003), perhaps due to anthropogenic activities, deforestation, forest fires, forest plantations, and fragmentation. Historical records confirm that the study areas have been previously subjected to frequent fires, which have deteriorated the forest. In certain locations, clear-felling of forests for plantation was also documented. Later, between 2003 and 2018, vegetation in these areas increased marginally, possibly due to the Government's conservation efforts in protected areas. Further conservation activities in protected area networks, including afforestation with indigenous flora and adequate legal protection, are recommended in this present study.Keywords: Normalized Difference Vegetation Index (NDVI), protected areas, remote sensing, vegetation, Western Ghat

    High-temperature tribological performance of stir-cast and heat-treated EV31A magnesium alloy: Experiments and predictions

    No full text
    The temperature effect on the wear behaviour of EV31A Mg alloy during dry sliding wear was investigated. Wear tests were carried out at 50, 100, 150, 200, and 250 °C using a standard load of 10 N and a sliding distance of 1000 m. Weight loss method was used to calculate the wear rate. Optical microscopy was used to examine the microstructure of the EV31A alloy. FE-SEM with EDS analysis was used to investigate the wear morphology, and XRD analysis was performed both before and after the wear test. A high wear coefficient (K) value (more than 10−4) indicates extreme wear for EV31A in all the scenarios. T4 EV31A had a maximum wear rate of 20.2 mg at 150 °C. The as-cast EV31A alloy exhibits an excellent wear rate at the price of mechanical properties under all test scenarios. Wear resistance is improved by Nd and Zr oxides, although Mg and Gd oxides have little effect. Zn has no effect on the wear behaviour of the EV31A. In as-cast, T4, and T6 heat-treated conditions, the EV31A alloy exhibits delamination (abrasive wear), oxide development (corrosive wear), and delamination mixed with plastic deformation (adhesive wear). A Three-layered ANN and adapted Fine Gaussian SVM predicted tribological characteristics. In ANN prediction, the maximum R2 was 0.99 for CoF and 0.89 for wear rate, respectively. Despite the fact that the study's normal load is constant, machine learning models allow to deduce that temperature and normal load are the main influential parameters in CoF and wear rate, respectively

    Functional identity of the gamma tropomyosin gene: Implications for embryonic development, reproduction and cell viability

    No full text
    The actin filament system is fundamental to cellular functions including regulation of shape, motility, cytokinesis, intracellular trafficking and tissue organization. Tropomyosins (Tm) are highly conserved components of actin filaments which differentially regulate filament stability and function. The mammalian Tm family consists of four genes; αTm, βTm, γTm and δTm. Multiple Tm isoforms (>40) are generated by alternative splicing and expression of these isoforms is highly regulated during development. In order to further identify the role of Tm isoforms during development, we tested the specificity of function of products from the γTm gene family in mice using a series of gene knockouts. Ablation of all γTm gene cytoskeletal products results in embryonic lethality. Elimination of just two cytoskeletal products from the γTm gene (NM1,2) resulted in a 50% reduction in embryo viability. It was also not possible to generate homozygous knockout ES cells for the targets which eliminated or reduced embryo viability in mice. In contrast, homozygous knockout ES cells were generated for a different set of isoforms (NM3,5,6,8,9,11) which were not required for embryogenesis. We also observed that males hemizygous for the knockout of all cytoskeletal products from the γTm gene preferentially transmitted the minus allele with 80–100% transmission. Since all four Tm genes are expressed in early embryos, ES cells and sperm, we conclude that isoforms of the γTm gene are functionally unique in their role in embryogenesis, ES cell viability and sperm function
    corecore