49 research outputs found

    Plasma Lithography Surface Patterning for Creation of Cell Networks

    Get PDF
    Systematic manipulation of a cell microenvironment with micro- and nanoscale resolution is often required for deciphering various cellular and molecular phenomena. To address this requirement, we have developed a plasma lithography technique to manipulate the cellular microenvironment by creating a patterned surface with feature sizes ranging from 100 nm to millimeters. The goal of this technique is to be able to study, in a controlled way, the behaviors of individual cells as well as groups of cells and their interactions

    Membrane vesicles from Pseudomonas aeruginosa activate the non-canonical inflammasome through caspase-5 in human monocytes

    Get PDF
    Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria both in vivo and in vitro. These lipid-bound structures carry a range of immunogenic components derived from the parent cell, which are transported into host target cells and activate the innate immune system. Recent advances in the field have shed light on some of the multifaceted roles of OMVs in host-pathogen interactions. In this study, we investigated the ability of OMVs from two clinically important pathogens, Pseudomonas aeruginosa and Helicobacter pylori, to activate canonical and non-canonical inflammasomes. P.\ua0aeruginosa OMVs induced inflammasome activation in mouse macrophages, as evidenced by "speck" formation, as well as the cleavage and secretion of interleukin-1β and caspase-1. These responses were independent of AIM2 and NLRC4 canonical inflammasomes, but dependent on the non-canonical caspase-11 pathway. Moreover, P.\ua0aeruginosa OMVs alone were able to activate the inflammasome in a TLR-dependent manner, without requiring an exogenous priming signal. In contrast, H.\ua0pylori OMVs were not able to induce inflammasome activation in macrophages. Using CRISPR/Cas9 knockout THP-1 cells lacking the human caspase-11 homologs, caspase-4 and -5, we demonstrated that caspase-5 but not caspase-4 is required for inflammasome activation by P. aeruginosa OMVs in human monocytes. In contrast, free P.\ua0aeruginosa LPS transfected into cells induced inflammasome responses via caspase-4. This suggests that caspase-4 and caspase-5 differentially recognize LPS depending on its physical form or route of delivery into the cell. These findings have relevance to Gram-negative infections in humans and the use of OMVs as novel vaccines. This article is protected by copyright. All rights reserved

    Sleep problems in children with autism spectrum disorder in Hong Kong: a cross-sectional study

    Get PDF
    BackgroundAutism spectrum disorder (ASD) is a neurodevelopmental disorder with a growing prevalence of sleep problems associated with significant behavioral problems and more severe autism clinical presentation. Little is known about the relationships between autism traits and sleep problems in Hong Kong. Therefore, this study aimed to examine whether children with autism have increased sleep problems than non-autistic children in Hong Kong. The secondary objective was to examine the factors associated with sleep problems in an autism clinical sample.MethodsThis cross-sectional study recruited 135 children with autism and 102 with the same age range of non-autistic children, aged between 6 and 12 years. Both groups were screened and compared on their sleep behaviors using the Children's Sleep Habits Questionnaire (CSHQ).ResultsChildren with autism had significantly more sleep problems than non-autistic children [t(226.73) = 6.20, p < 0.001]. Bed -sharing [beta = 0.25, t(165) = 2.75, p = 0.07] and maternal age at birth [beta = 0.15, t(165) = 2.05, p = 0.043] were significant factors associated with CSHQ score on the top of autism traits. Stepwise linear regression modeling identified that only separation anxiety disorder (beta = 4.83, t = 2.40, p = 0.019) best-predicted CSHQ.ConclusionIn summary, autistic children suffered from significantly more sleep problems and co-occurring separation anxiety disorder brings greater sleep problems as compared to non-autistic children. Clinicians should be more aware of sleep problems to provide more effective treatments to children with autism

    Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China

    Get PDF
    Background: Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. Objectives: We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. Methods: We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. Results: We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at < 50 ng/L. Caffeine (median-maximum, nanograms per liter: 24.4-564), metronidazole (1.8-19.3), salicylic acid (16.6-41.2), clofibric acid (1.2-3.3), carbamazepine (1.3-6.7), and dimetridazole (6.9-14.7) were found in ≥ 20% of samples. Cities within the Yangtze River region and Guangzhou were regarded as contamination hot spots because of elevated levels and frequent positive detections. Of the 17 pharmaceuticals detected, 13 showed very low risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Conclusion: Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere

    Sequential algorithm to stratify liver fibrosis risk in overweight/obese metabolic dysfunction-associated fatty liver disease

    Get PDF
    BackgroundNon-diabetic overweight/obese metabolic dysfunction-associated fatty liver disease (MAFLD) represents the largest subgroup with heterogeneous liver fibrosis risk. Metabolic dysfunction promotes liver fibrosis. Here, we investigated whether incorporating additional metabolic risk factors into clinical evaluation improved liver fibrosis risk stratification among individuals with non-diabetic overweight/obese MAFLD.Materials and methodsComprehensive metabolic evaluation including 75-gram oral glucose tolerance test was performed in over 1000 participants from the New Hong Kong Cardiovascular Risk Factor Prevalence Study (HK-NCRISPS), a contemporary population-based study of HK Chinese. Hepatic steatosis and fibrosis were evaluated based on controlled attenuation parameter and liver stiffness (LS) measured using vibration-controlled transient elastography, respectively. Clinically significant liver fibrosis was defined as LS ≥8.0 kPa. Our findings were validated in an independent pooled cohort comprising individuals with obesity and/or polycystic ovarian syndrome.ResultsOf the 1020 recruited community-dwelling individuals, 312 (30.6%) had non-diabetic overweight/obese MAFLD. Among them, 6.4% had LS ≥8.0 kPa. In multivariable stepwise logistic regression analysis, abnormal serum aspartate aminotransferase (AST) (OR 7.95, p&lt;0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) ≥2.5 (OR 5.01, p=0.008) were independently associated with LS ≥8.0 kPa, in a model also consisting of other metabolic risk factors including central adiposity, hypertension, dyslipidaemia and prediabetes. A sequential screening algorithm using abnormal AST, followed by elevated HOMA-IR, was developed to identify individuals with LS ≥8.0 kPa, and externally validated with satisfactory sensitivity (&gt;80%) and negative predictive value (&gt;90%).ConclusionA sequential algorithm incorporating AST and HOMA-IR levels improves fibrosis risk stratification among non-diabetic overweight/obese MAFLD individuals

    Successive influenza virus infection and Streptococcus pneumoniae stimulation alter human dendritic cell function

    Get PDF
    Background: Influenza virus is a major cause of respiratory disease worldwide and Streptococcus pneumoniae infection associated with influenza often leads to severe complications. Dendritic cells are key antigen presenting cells but its role in such co-infection is unclear.Methods: In this study, human monocyte derived-dentritic cells were either concurrently or successively challenged with the combination of live influenza virus and heat killed pneumococcus to mimic the viral pneumococcal infection. Dendritic cell viability, phenotypic maturation and cytokine production were then examined.Results: The challenge of influenza virus and pneumococcus altered dendritic cell functions dependent on the time interval between the successive challenge of influenza virus and pneumococcus, as well as the doses of pneumococcus. When dendritic cells were exposed to pneumococcus at 6 hr, but not 0 hr nor 24 hr after influenza virus infection, both virus and pneumococcus treated dendritic cells had greater cell apoptosis and expressed higher CD83 and CD86 than dendritic cells infected with influenza virus alone. Dendritic cells produced pro-inflammatory cytokines: TNF-α, IL-12 and IFN-γ synergistically to the successive viral and pneumococcal challenge. Whereas prior influenza virus infection suppressed the IL-10 response independent of the timing of the subsequent pneumococcal stimulation.Conclusions: Our results demonstrated that successive challenge of dendritic cells with influenza virus and pneumococcus resulted in synergistic up-regulation of pro-inflammatory cytokines with simultaneous down-regulation of anti-inflammatory cytokine, which may explain the immuno-pathogenesis of this important co-infection. © 2011 Wu et al; licensee BioMed Central Ltd.published_or_final_versio

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Computational chemistry for graphene-based energy applications: progress and challenges

    Get PDF
    YesResearch in graphene-based energy materials is a rapidly growing area. Many graphene-based energy applications involve interfacial processes. To enable advances in the design of these energy materials, such that their operation, economy, efficiency and durability is at least comparable with fossil-fuel based alternatives, connections between the molecular-scale structure and function of these interfaces are needed. While it is experimentally challenging to resolve this interfacial structure, molecular simulation and computational chemistry can help bridge these gaps. In this Review, we summarise recent progress in the application of computational chemistry to graphene-based materials for fuel cells, batteries, photovoltaics and supercapacitors. We also outline both the bright prospects and emerging challenges these techniques face for application to graphene-based energy materials in future.vesk
    corecore