1,500 research outputs found

    Ladder-QCD at finite isospin chemical potential

    Get PDF
    We use an effective QCD model (ladder-QCD) to explore the phase diagram for chiral symmetry breaking and restoration at finite temperature with different u,du,d quark chemical potentials. In agreement with a recent investigation based on the Nambu-Jona-Lasinio model, we find that a finite pion condensate shows up for high enough isospin chemical potential μI=(μu−μd)/2\mu_{I}=(\mu_{u}-\mu_{d})/2. For small μI\mu_{I} the phase diagram in the (μB,T)(\mu_B,T) plane shows two first order transition lines and two critical ending points.Comment: Typed in RevTex4, pages 12, figures 2. Two references adde

    Symmetries and Motions in Manifolds

    Full text link
    In these lectures the relations between symmetries, Lie algebras, Killing vectors and Noether's theorem are reviewed. A generalisation of the basic ideas to include velocity-dependend co-ordinate transformations naturally leads to the concept of Killing tensors. Via their Poisson brackets these tensors generate an {\em a priori} infinite-dimensional Lie algebra. The nature of such infinite algebras is clarified using the example of flat space-time. Next the formalism is extended to spinning space, which in addition to the standard real co-ordinates is parametrized also by Grassmann-valued vector variables. The equations for extremal trajectories (`geodesics') of these spaces describe the pseudo-classical mechanics of a Dirac fermion. We apply the formalism to solve for the motion of a pseudo-classical electron in Schwarzschild space-time.Comment: 19 pages. Lectures at 28th Winter School of Theoretical Physics, Karpacz (Poland, 1992) by J.W. van Holte

    Particles with anomalous magnetic moment in external e.m. fields: the proper time formulation

    Full text link
    In this paper we evaluate the expression for the Green function of a pseudo-classical spinning particle interacting with constant electromagnetic external fields by taking into account the anomalous magnetic and electric moments of the particle. The spin degrees of freedom are described in terms of Grassmann variables and the evolution operator is obtained through the Fock-Schwinger proper time method.Comment: 10 page

    Spinning particle in an external linearized gravitational wave field

    Full text link
    We study the interaction of a scalar and a spinning particle with a coherent linearized gravitational wave field treated as a classical spin two external field. The spin degrees of freedom of the spinning particle are described by skew-commuting variables. We derive the explicit expressions for the eigenfunctions and the Green's functions of the theory. The discussion is exact within the approximation of neglecting radiative corrections and we prove that the result is completely determined by the semiclassical contribution.Comment: 11 page

    A large Nc perspective on the QCD phase diagram

    Full text link
    The transition between the hadronic phase and the quark gluon plasma phase at nonzero temperature and quark chemical potentials is studied within the large-Nc expansion of QCD.Comment: 5 page
    • …
    corecore