2,242 research outputs found

    The ISOPHOT-MAMBO survey of 3CR radio sources: Further evidence for the unified schemes

    Full text link
    We present the complete set of ISOPHOT observations of 3CR radio galaxies and quasars, which are contained in the ISO Data Archive, providing 75 mid- and far-infrared spectral energy distributions (SEDs) between 5 and 200 micron. For 28 sources they are supplemented with MAMBO 1.2 mm observations and for 15 sources with new submillimetre data from the SCUBA archive. We check the orientation-dependent unified scheme, in which the powerful FR2 narrow line galaxies are quasars viewed at high inclination, so that their nuclei are hidden behind a dust torus intercepting the optical-ultraviolet AGN radiation and reemitting it in the infrared. We find that (1) both the quasars and the galaxies show a high mid- to far-infrared luminosity ratio typical for powerful AGNs and (2) -- when matched in 178 MHz luminosity -- both show the same ratio of isotropic far-infrared to isotropic 178 MHz lobe power. Therefore, from our large sample investigated here we find strong evidence for the orientation-dependent unification of the powerful FR2 galaxies with the quasars.Comment: 16 pages, 7 figures, 3 tables, accepted by Astronomy & Astrophysic

    Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?

    Get PDF
    Background Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. Methods We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae) with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters). We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate) under controlled exposure to desiccation, and explored their variability within and between species. Results Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens’ initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. Discussion Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin

    A spatial analysis of seagrass habitat and community diversity in the Great Barrier Reef World Heritage Area

    Get PDF
    The Great Barrier Reef World Heritage Area (GBRWHA) in north eastern Australia spans 2,500 km of coastline and covers an area of ~350,000 km2. It includes one of the world’s largest seagrass resources. To provide a foundation to monitor, establish trends and manage the protection of seagrass meadows in the GBRWHA we quantified potential seagrass community extent using six random forest models that include environmental data and seagrass sampling history. We identified 88,331 km2 of potential seagrass habitat in intertidal and subtidal areas: 1,111 km2 in estuaries, 16,276 km2 in coastal areas, and 70,934 km2 in reef areas. Thirty-six seagrass community types were defined by species assemblages within these habitat types using multivariate regression tree models. We show that the structure, location and distribution of the seagrass communities is the result of complex environmental interactions. These environmental conditions include depth, tidal exposure, latitude, current speed, benthic light, proportion of mud in the sediment, water type, water temperature, salinity, and wind speed. Our analysis will underpin spatial planning, can be used in the design of monitoring programs to represent the diversity of seagrass communities and will facilitate our understanding of environmental risk to these habitats

    Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems

    Get PDF
    Streams and rivers in mediterranean-climate regions (med-rivers in med-regions) are ecologically unique, with flow regimes reflecting precipitation patterns. Although timing of drying and flooding is predictable, seasonal and annual intensity of these events is not. Sequential flooding and drying, coupled with anthropogenic influences make these med-rivers among the most stressed riverine habitat worldwide. Med-rivers are hotspots for biodiversity in all med-regions. Species in med-rivers require different, often opposing adaptive mechanisms to survive drought and flood conditions or recover from them. Thus, metacommunities undergo seasonal differences, reflecting cycles of river fragmentation and connectivity, which also affect ecosystem functioning. River conservation and management is challenging, and trade-offs between environmental and human uses are complex, especially under future climate change scenarios. This overview of a Special Issue on med-rivers synthesizes information presented in 21 articles covering the five med-regions worldwide: Mediterranean Basin, coastal California, central Chile, Cape region of South Africa, and southwest and southern Australia. Research programs to increase basic knowledge in less-developed med-regions should be prioritized to achieve increased abilities to better manage med-rivers

    A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs) and sickness behavior

    Get PDF
    It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions

    The Safety and Effect of Topically Applied Recombinant Basic Fibroblast Growth Factor on the Healing of Chronic Pressure Sores

    Get PDF
    The first randomized, blinded, placebo-controlled human trials of recombinant basic fibroblast growth factor (bFGF) for pressure sore treatment were performed. Three different concentrations of bFGF in five dosing schedules were tested for safety using hematology, serum chemistries, urinalysis, absorption, antibody formation, and signs of toxicity. Efficacy was evaluated by wound volumes, histology, and photography. No toxicity, significant serum absorption, or antibody formation occurred. In six of eight subgroups, there was a trend toward efficacy with bFGF treatment. When all subgroups were combined, comparison of the slopes of the regression curves of volume decrease over initial pressure sore volume demonstrated a greater healing effect for the bFGF-treated patients (p 70% wound closure (p < 0.05). Blinded observers were able to distinguish differences in visual wound improvement between bFGF and placebo groups. These data suggest that bFGF may be effective in the treatment of chronic wounds

    NMR hyperpolarization techniques of gases

    Get PDF
    Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4–8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science

    Deployment of whole genome next-generation sequencing of SARS-CoV-2 in a military maritime setting

    Get PDF
    BACKGROUND: SARS-CoV-2 can spread rapidly on maritime platforms. Several outbreaks of SARS-CoV-2 have been reported on warships at sea, where transmission is facilitated by living and working in close quarters. Core components of infection control measures such as social distancing, patient isolation and quarantine of exposed persons are extremely difficult to implement. Whole genome sequencing (WGS) of SARS-CoV-2 has facilitated epidemiological investigations of outbreaks, impacting on outbreak management in real time by identifying transmission patterns, clusters of infection and guiding control measures. We suggest such a capability could mitigate against the impact of SARS-CoV-2 in maritime settings.METHODS: We set out to establish SARS-CoV-2 WGS using miniaturised nanopore sequencing technology aboard the Royal Fleet Auxiliary ARGUS while at sea. Objectives included designing a simplified protocol requiring minimal reagents and processing steps, the use of miniaturised equipment compatible for use in limited space, and a streamlined and standalone data analysis capability to allow rapid in situ data acquisition and interpretation.RESULTS: Eleven clinical samples with blinded SARS-CoV-2 status were tested at sea. Following viral RNA extraction and ARTIC sequencing library preparation, reverse transcription and ARTIC PCR-tiling were performed. Samples were subsequently barcoded and sequenced using the Oxford Nanopore MinION Mk1B. An offline version of the MinKNOW software was used followed by CLC Genomics Workbench for downstream analysis for variant identification and phylogenetic tree construction. All samples were correctly classified, and relatedness identified.CONCLUSIONS: It is feasible to establish a small footprint sequencing capability to conduct SARS-CoV-2 WGS in a military maritime environment at sea with limited access to reach-back support. This proof-of-concept study has highlighted the potential of deploying such technology in the future to military environments, both maritime and land-based, to provide meaningful clinical data to aid outbreak investigations.</p

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
    corecore