764 research outputs found
Sudden cardiac death in patients with ischemic heart failure undergoing coronary artery bypass grafting results from the STICH randomized clinical trial (Surgical Treatment for Ischemic Heart Failure)
Background—The risk of sudden cardiac death (SCD) in patients with heart failure following CABG has not been examined in a contemporary clinical trial of surgical revascularization. This analysis describes the incidence, timing and clinical predictors of SCD after CABG.
Methods—Patients enrolled in the Surgical Treatment of Ischemic Heart Failure (STICH) trial who underwent CABG with or without surgical ventricular reconstruction (SVR) were included. We excluded patients with prior ICD and those randomized only to medical therapy. The primary outcome was SCD as adjudicated by a blinded committee. A Cox model was used to examine and identify predictors of SCD. The Fine and Gray method was used to estimate the incidence of SCD accounting for the competing risk of other deaths.
Results—Over a median follow-up of 46 months, 113 patients of 1411 patients who received CABG without (n = 934) or with SVR (n = 477) had SCD; 311 died of other causes. The mean LVEF at enrollment was 28±9%. The 5-year cumulative incidence of SCD was 8.5%. Patients who had SCD and those who did not die were younger and had fewer comorbid conditions than those who died for reasons other than SCD. In the first 30 days after CABG, SCD (n=5) accounted for 7% of all deaths. The numerically greatest monthly rate of SCD was in the 31-90 day time period. In a multivariable analysis including baseline demographics, risk factors, coronary anatomy and LV function, ESVI and BNP were most strongly associated with SCD.
Conclusions—The monthly risk of SCD shortly after CABG among patients with a low LVEF is highest between the first and third month, suggesting that risk stratification for SCD should occur early in the postoperative period, particularly in patients with increased preoperative ESVI and/or BNP
The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis
Background: Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced. Results: Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.7 Mb), GC-rich (51%), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host. Conclusions: The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-924) contains supplementary material, which is available to authorized users
Chronic Thromboembolic Pulmonary Hypertension and Antiphospholipid Syndrome with Immune Thrombocytopenia : A Case Report
BACKGROUND Antiphospholipid syndrome is an autoimmune disorder characterized by a hypercoagulable state associated with circulating antiphospholipid antibodies. The presence of antiphospholipid antibodies can result in a variety of clinical symptoms, such as thrombocytopenia, stillbirth, endocardial pathologies, and recurrent pulmonary embolism. CASE REPORT We present the case of a 23-year-old man with antiphospholipid syndrome and chronic thromboembolic pulmonary hypertension who developed severe thrombocytopenia. The patient died from right heart failure before the thrombocytopenia could be managed, preventing performance of a pulmonary endarterectomy procedure. CONCLUSIONS Managing platelet counts in patients with antiphospholipid syndrome prior to major surgery is very problematic, and requires similar treatment strategy as in patients with immune thrombocytic thrombocytopenia. Platelet transfusions may further decrease platelet count, as it can trigger formation of new antibodies.publishersversionPeer reviewe
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Recommended from our members
The Pulmonary Vascular Research Institute celebrates its first decade.
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC
This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
Ultrasound-facilitated, catheter-directed thrombolysis vs anticoagulation alone for acute intermediate-high-risk pulmonary embolism: Rationale and design of the HI-PEITHO study
BACKGROUND: Due to the bleeding risk of full-dose systemic thrombolysis and the lack of major trials focusing on the clinical benefits of catheter-directed treatment, heparin antiocoagulation remains the standard of care for patients with intermediate-high-risk pulmonary embolism (PE).
METHODS AND RESULTS: The Higher-Risk Pulmonary Embolism Thrombolysis (HI-PEITHO) study (ClinicalTrials.gov Identifier: NCT04790370) is a multinational multicenter randomized controlled parallel-group comparison trial. Patients with: (1) confirmed acute PE; (2) evidence of right ventricular (RV) dysfunction on imaging; (3) a positive cardiac troponin test; and (4) clinical criteria indicating an elevated risk of early death or imminent hemodynamic collapse, will be randomized 1:1 to treatment with a standardized protocol of ultrasound-facilitated catheter-directed thrombolysis plus anticoagulation, vs anticoagulation alone. The primary outcome is a composite of PE-related mortality, cardiorespiratory decompensation or collapse, or non-fatal symptomatic and objectively confirmed PE recurrence, within 7 days of randomization. Further assessments cover, apart from bleeding complications, a broad spectrum of functional and patient-reported outcomes including quality of life indicators, functional status and the utilization of health care resources over a 12-month follow-up period. The trial plans to include 406 patients, but the adaptive design permits a sample size increase depending on the results of the predefined interim analysis. As of May 11, 2022, 27 subjects have been enrolled. The trial is funded by Boston Scientific Corporation and through collaborative research agreements with University of Mainz and The PERT Consortium.
CONCLUSIONS: Regardless of the outcome, HI-PEITHO will establish the first-line treatment in intermediate-high risk PE patients with imminent hemodynamic collapse. The trial is expected to inform international guidelines and set the standard for evaluation of catheter-directed reperfusion options in the future
- …
