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Frank J Stewart5, Irene LG Newton6, Tanja Woyke7, Dongying Wu8, Jenna Morgan Lang8, Jonathan A Eisen8*
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Abstract

Background: Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living
systems that are virtually independent of photosynthetic primary production. These associations have evolved
multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by
steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses
in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture
independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a
model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it
under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was
sequenced.

Results: Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction,
the S. velum symbiont genome was large (2.7 Mb), GC-rich (51%), and contained a large number (78) of mobile gen-
etic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and
necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes,
including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as
an endosymbiont, the bacterium may have the capacity to live outside the host.

Conclusions: The physiological dexterity indicated by the genome substantially improves our understanding of
the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may
inhabit during their lifecycle.

Keywords: Symbiosis, Chemosynthesis, Sulfur oxidation, Respiratory flexibility, H+/Na+ -membrane cycles,
Calvin cycle, Pyrophosphate-dependent phosphofructokinase, Heterotrophy, Motility, Mobile genetic elements
Background
Symbiosis is one of the major driving forces of evolutionary
adaptation. Chloroplasts and mitochondria are examples of
ancient symbiotic partnerships which played key roles
in the emergence and diversification of eukaryotic life
on Earth [1]. Bacteria have been found in symbioses with
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organisms as diverse as plants, insects, marine inverte-
brates, and protists [2-5], expanding metabolic capabilities
of the partners and allowing them to occupy otherwise
unavailable ecological niches. Despite the ubiquity of such
mutualistic associations and their importance to health
and the environment, studies of many host-associated
microorganisms have been complicated by difficulties
in both the maintenance of symbiotic organisms in culture
and the inability to genetically manipulate them. However,
progress in culture-independent techniques has allowed
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for rapid advances in understanding symbiosis diversity,
evolution, genetics, and physiology [6-8].
Symbioses between chemoautotrophic bacteria and

invertebrates are ubiquitous in reducing marine habitats,
such as deep-sea hydrothermal vents and coastal sediments.
In these environments, the symbiotic bacteria derive energy
by oxidizing reduced inorganic molecules (e.g., sulfide) and
fix carbon dioxide for biomass production. Their hosts have
evolved behavioral, physiological, and biochemical adapta-
tions for capturing and delivering the required electron
donors and acceptors to the symbionts. In return, these
invertebrates obtain their nutrition from bacterial chemo-
synthesis [5,9].
Solemya velum and its endosymbionts is one of the best-

described chemoautotrophic symbioses. The host, a proto-
branch bivalve, lives in coastal nutrient-rich sediments
where it builds Y-shaped burrows that span the oxic-
anoxic interface, allowing access to both reduced inorganic
sulfur as an energy source and oxygen for use as a terminal
oxidant [10]. The symbionts, which constitute a single 16S
rRNA phylotype of γ-proteobacteria [11], are localized to
specialized epithelial cells (bacteriocytes) in the gills, sepa-
rated from the cytoplasm by a peribacterial membrane.
Using energy from the oxidation of sulfide, the symbionts
fix CO2 via the Calvin-Benson-Bassham Cycle [12,13].
Primary production in the symbionts sustains the host,
which has only a rudimentary gut and cannot effectively
filter-feed [14,15]. Many key properties of this symbiosis
still remain to be characterized, including the exchange of
metabolites and signals between the symbiont and the
host and the mechanism of symbiont acquisition at each
new host generation (i.e., symbiont transmission mode).
The mode by which S. velum acquires its symbionts

has important implications for understanding symbiont
genome evolution. Symbiont-specific genes have been
amplified from the host ovarian tissue of both S. velum
and its congener, S. reidi [16,17], raising the hypothesis
that symbionts are transmitted maternally (vertically)
between successive host generations via the egg. Vertical
transmission has also been inferred in deep-sea clams of
the Vesicomyidae [18,19], in which symbionts have a re-
duced genome size (1.2 Mb) and appear to be obligately
associated with their host [20-23]. In vesicomyid symbi-
oses, host and symbiont phylogenies are largely congruent,
a pattern consistent with vertical symbiont transmission
[24]. Nonetheless, instances of lateral symbiont movement
among some vesicomyids have been inferred based on de-
coupling of symbiont and host evolutionary trajectories
[25], bringing diverse symbiont strains into contact and
creating opportunities for symbiont genome evolution via
recombination [26,27]. In the Solemyidae, on the other
hand, symbionts of different Solemya species are scattered
across phylogenetic clades (i.e., polyphyly), indicating dis-
tinct evolutionary origins relative to the monophyly of the
hosts [5,28]. A preliminary analysis was unable to defini-
tively resolve the extent of genetic coupling between
the S. velum host and its symbionts in populations along
the southern New England coast [26]. These patterns may
be the result of a physical decoupling of symbiont and host
lineages, possibly due to lateral symbiont transmission
between hosts.
It is therefore possible that transmission in solemyid

symbioses, as in vesicomyids, involves a combination of
both vertical passage through the maternal germ line
and lateral acquisition of symbionts from the environment
or other co-occurring host individuals. Such a mixed trans-
mission mode could strongly impact symbiont genome
evolution by creating opportunities for lateral gene transfer,
relieving the constraints of genetic bottlenecks imposed by
strict vertical transmission [29,30], and imposing selective
pressures for the maintenance of diverse functions in the
symbiont genome that would mediate survival outside the
host. The genome of the S. velum symbiont will provide
insights into the transmission mode of this symbiont,
define a framework for examining its physiological ad-
aptations, and supply a reference sequence for future stud-
ies of the ecology and evolution of solemyid symbionts.
Here we present an analysis of the genome from the

S. velum symbiont. First, genes that encode core meta-
bolic functions are discussed. Emphasis is placed on
bioenergetics, autotrophy, heterotrophy, and nitrogen me-
tabolism, which indicate metabolic potential beyond strict
chemolithoautotrophy. Genes encoding cellular functions
that pertain to the symbiotic lifestyle are also analyzed. A
special focus is on the processes, such as membrane trans-
port, sensing, and motility that may be involved in interac-
tions of the symbiont with the host and the environment.
Wherever appropriate, the gene content is compared to
that of free-living and host-associated bacteria, in par-
ticular the intracellular chemosynthetic symbionts of
the vesicomyid clams, Calyptogena magnifica [22] and
Calyptogena okutanii [20], the vestimentiferan tubeworms,
Riftia pachyptila [31] and Tevnia jerichona [32], the
scaly-foot snail, Crysomollon squamiferum, [33] and the
marine oligochaete worm, Olavius algarvensis, [34]. This
comprehensive analysis defines the S. velum symbiont as a
metabolically versatile bacterium adapted to living inside
the host but also potentially capable of survival on
the outside. It informs attempts to culture the symbionts
and generates multiple intriguing hypotheses that now
await experimental validation.

Results and discussion
General genome features
The genome of the S. velum symbiont consists of 10
non-overlapping scaffolds, totaling 2,702,453 bp, with an
average G + C content of 51%. The three largest scaffolds
(1.21 Mb, 0.89 Mb, 0.54 Mb) contain 97.8% of the total
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genomic sequence and 98.4% of the predicted genes
(Additional file 1: Table S1). Assembly of the scaffolds
into a closed genome was prevented by stretches of single
nucleotides or groups of a few nucleotides repeated up to
70 times that could not be spanned. However, the high
depth of sequence coverage and the presence of all 31
core bacterial phylogenetic gene markers [35] suggest that
most gene-coding regions were detected in the analysis.
Nevertheless, as the genome is not closed, a definitive list
of all symbiont genes could not be made.
An overview of the S. velum symbiont genome compared

to selected symbiotic and free-living γ-proteobacteria, in-
cluding other thiotrophs, is presented in Table 1. Briefly,
90.7% of the genome sequence encodes 2,757 genes, on
average 885 bp long. 2,716 (98.5%) genes are protein-
coding. Function was predicted for 1,988 (72.1%) of all the
genes, while 769 (27.9%) were identified as encoding
hypothetical proteins. 382 genes (13.8%) have one or more
paralog in the genome, with the largest paralogous group
encoding transposases associated with mobile elements.
The genome contains a single ribosomal RNA (rRNA) op-
eron and 38 transfer RNAs (tRNA) corresponding to the
20 standard proteinogenic amino acids. Due to the wobble
base-pairing [36], tRNAs for each given amino acid can
pair with any codon in the genome for that amino acid
(Additional file 2: Table S2).
A model of the symbiont cell based on functional pre-

dictions is presented in Figure 1 (see Additional file 3:
Table S3 for the list of the corresponding gene products).
When grouped into COG categories [37], the largest num-
ber of genes within the genome of the S. velum symbiont
was associated with metabolism of coenzymes, transcrip-
tion, posttranscriptional modification of proteins, cell divi-
sion, DNA replication, and energy metabolism (Figure 2).
Based on a BLASTN [38] search against the NCBI-nr
database analyzed by MEGAN [39], 1,735 of the genes in
the genome were assigned to γ-proteobacteria, mainly
other sulfur-oxidizing symbionts (197 genes) and bacteria
from the order of Chromatiales (184 genes). Among the
genes within γ-proteobacteria, 897 could not be assigned to
a lower-level taxon in the NCBI taxonomy. 37 genes had
the closest matches to eukaryotes and 6 to archaea. No taxa
could be assigned to 29 genes, while 212 genes had no hits
in the NCBI-nr database (Figure 3). The majority of the se-
quences designated as “eukaryotic” were hypothetical and
produced low percent amino acid identity matches in the
BLASTN search.

Metabolic functions
Chemolithotrophy
The S. velum symbiont, and chemoautotrophic symbionts
in general, are remarkable in their ability to support
almost all the metabolic needs of their metazoan hosts
with energy derived from thiotrophy. Present genome data
illustrate the ability of the S. velum symbiont to oxidize
both hydrogen sulfide and thiosulfate via diverse path-
ways, in agreement with previous measurements of
symbiont gene expression [40] and in vitro experiments
showing that both substrates can stimulate carbon fix-
ation in the symbiont [10,13]. The S. velum symbiont
genes involved in the oxidation of reduced sulfur species
are most closely related to those of the purple sulfur
γ-proteobacterium, Allochromatium vinosum (Figure 4),
in which the genetic components and the biochemical
mechanisms of sulfur metabolism have been well charac-
terized [41].

Periplasmic sulfide and thiosulfate oxidation In the
periplasm of the S. velum symbiont, sulfide, thiosulfate,
and, possibly, elemental sulfur, may be oxidized for energy
by the Sox system, which is represented in the genome
(Figure 4). The encoded SoxYZAXB, flavocytochrome c
dehydrogenase (FccAB), and type I and IV sulfide-quinone
reductases (Sqr) potentially reduce cytochromes c and qui-
nones, which along the course of the electron-transport
chain translate into membrane-ion gradients, NADH, and
ATP, ultimately fueling biosynthetic and other energy-
requiring cellular processes, including autotrophy (Figure 1).
In A. vinosum and the green non-sulfur bacterium,
Chlorobium tepidum, SoxYZ, SoxAX, and SoxB proteins
participate in the formation of transient sulfur deposits as
intermediates during sulfur oxidation [43]. In fact, sulfur
deposits are common to all known sulfur-oxidizing bacteria
(SOB) which, like the S. velum symbiont, lack SoxCD sulfur
dehydrogenase (Figure 4) [44], including the symbionts of
the hydrothermal vent tubeworm, R. pachyptila [31,45],
and the clam, C. magnifica [22,46]. Microscopically-
detectable intracellular or extracellular sulfur has not
been observed either in the symbiont-containing gills
of S. velum or directly within the symbionts (Cavanaugh,
unpublished observation). Absence of sulfur deposits may
be attributed to a very rapid consumption of any available
reduced sulfur substrate. This agrees with the fact that the
S. velum symbiont have the highest known carbon fixation
rate, and, hence, demand for energy, of all the studied
chemosynthetic symbionts, i.e., 65 μmol min−1 g of pro-
tein−1 [13] compared to 0.45 μmol min−1 g of protein−1 of
the next highest rate measured in the symbionts of R.
pachyptila [47]. Alternatively, in the S. velum symbiont
intermediate sulfur may be stored in a chemical form that
is not easily observed microscopically.

Cytoplasmic sulfide oxidation Energy generating oxi-
dation of sulfide to sulfite may be catalyzed in the cyto-
plasm of the S. velum symbiont by the reverse-acting
dissimilatory sulfite reductase (rDsr) pathway (Figure 1).
All of the enzymes and accessory proteins required for
this pathway are encoded in a dsrABEFHCMKLJOPNRS



Table 1 General genome features of the S. velum symbiont in comparison to other γ-proteobacteria
Solemya velum
endosymbiont

Riftia pachyptila
endosymbiont*

Calyptogena
magnifica

endosymbiont

Calyptogena
okutanii

endosymbiont

Buchnera
aphidicola

APS

Ca. Carsonella
ruddii PV

Thiomicrospira
crunogena
XCL-2

Allochromatium
vinosum
DSM 180

Escherichia coli
K12 DH1,

ATCC 33849

Size, mb 2.70 3.20 1.20 1.02 0.65 0.16 2.40 3.60 4.63

G + C% 51.0 57.9 34.0 31.6 26.4 16.6 43.1 64.3 50.8

ORFs 2757 4182 1118 981 615 213 2263 3317 4273

Average ORF length, bp 885 354 874 897 935 737 974 1005 940

Percent coding 90.7 69.8 79.8 85.9 87.6 97.3 90.5 90.6 86.6

rRNA operons (16S-23S-5S) 1 1 1 1 1 1 3 3 7

tRNA genes 38 32 36 36 32 28 43 51 88

Proteins with predicted function 1988 2218 932 838 561 113 1785 2505 3506

Hypothetical and uncharacterized
conserved proteins

769 3693 175 253 106 46 689 924 833

ORFs in paralogous families 382 292 27 19 7 0 159 413 794

Pseudogenes 0 0 100 2 1 0 8 81 178

Sigma factors 9 4 2 2 2 0 6 6 7

Mobile elements 78 10 0 0 0 0 10 19 39

Symbiont Symbiont Symbiont Symbiont Symbiont Symbiont Free-living Free-living Free-living

The comparison includes genomes of the chemosynthetic symbionts of R. pahyptila, C. magnifica, and C. okutanii; a symbiont of psyllids (the smallest sequenced genome), Carsonella ruddii; an α-proteobacterial aphid
symbiont, B. aphidicola; free-living sulfur-oxidizers, T. crunogena and A. vinosum, and enterobacterium E. coli. *NCBI Accession PRJNA16744 and PRJNA72967.
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Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 Predicted model of the S. velum symbiont cell. The diagram, based on the gene annotation of the symbiont genome, depicts key
functional systems and metabolic pathways: sulfur oxidation, electron transport, ATP synthases, CO2-fixation via the Calvin Cycle, gluconeogenesis,
polyglucose synthesis, glycolysis, TCA and glyoxylate cycles, synthesis of amino acids, fatty acids, lipids, isoprenoids via non-mevalonate pathway, and
the cell wall, solute transporters, protein secretion systems, and the type IV pilus. Different protein categories are color-coded and the individual subunits
indicated by shape symbols. The direction of substrate transport across the membrane is shown with arrows. Components of the electron transport
chain are arranged from the lowest to the highest electronegativity of the electron donors (blue) and acceptors (red). The corresponding electronegativity
values are listed next to the respective enzymes. Enzymes shared between glycolysis, gluconeogenesis, and the Calvin cycle are designated in green.
Enzymes unique to these pathways are designated in red. Enzymes shared between the Calvin cycle and the pentose phosphate cycle are designated in
blue. Amino acids which may be essential for the host are designated in red. Speculated pathways are designated with a question mark. The abbreviations
used, the respective full gene product names, and the corresponding NCBI protein ID references are listed in Additional file 3: Table S3.
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operon (Figure 4). While multiple homologues of dsrC
were identified outside the dsr operon, these genes did
not encode the two conserved C-terminal cysteines
required for the protein to function [48,49]. The DsrC
enzyme likely mediates transfer of electrons from sulfide
reductase, DsrAB, to a transmembrane electron trans-
port complex DsrKMJOP, an entry point for electrons
derived from cytoplasmic oxidation of sulfur into the
electron transport chain [50]. rDsr may be the key
energy-generating pathway in the symbiont, as sulfide
has a six-fold higher effect on carbon fixation in the S.
velum symbiosis [13] compared to thiosulfate oxidized
by the Sox pathway.
Figure 2 Comparison of the COG categories between the S. velum sym
percentage of genes in each category is normalized to the percentage of t
*NCBI accession PRJNA16744.
Sulfite oxidation Sulfite generated by rDsr may be
further oxidized to sulfate in the cytoplasm by a sequential
action of APS reductase (AprABM) and an ATP-generating
ATP sulfurylase (Sat) (Figures 1 and 4). Identification of
the respective genes agrees with measured Apr and Sat
activity in the symbiont-containing S. velum tissue [51].
Sulfate generated in this pathway may be exported from
the cytoplasm via a sulfate-bicarbonate antiporter SulP
(Figure 1). While electrons obtained from the oxidation of
sulfide, thiosulfate, and, possibly, elemental sulfur by Sox
and rDsr are shuttled into the electron transport chain,
energy obtained from the oxidation of sulfite is immediately
available in the form of ATP.
biont and selected symbiotic and free-living bacteria. The
hose COG categories in the genome of E. coli K12 DH1, ATCC 33849.



Figure 3 Taxa assigned to the genes in the S. velum symbiont genome. The insert chart shows the breakdown of the genes by taxa within
the class of γ-proteobacteria (62.9%). The unassigned genes have not been assigned a lower taxon in this analysis. The unclassified genes have
not been further classified in the NCBI taxonomy. All the taxa are mutually exclusive.
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Bioenergetics
The S. velum symbiont is thought to harvest energy
from reduced sulfur oxidation with oxygen. Interestingly,
its genome also encodes other respiratory pathways sug-
gestive of diverse metabolic strategies. Based on the gene
content, the symbiont may utilize multiple electron donors
such as hydrogen, pyruvate, malate, succinate, and formate,
and use alternative electron acceptors such as nitrate
and dimethyl sulfoxide (DMSO). Furthermore, unlike
any chemosynthetic symbiont studied to date, the
S. velum symbiont contains genes that may allow it to
preferentially establish H+ and Na+ electrochemical
membrane gradients during each step of respiration and
to selectively utilize them for ATP synthesis, solute
transport, and pH control. This high degree of respiratory
flexibility encoded in the S. velum symbiont genome sug-
gests that this bacterium is adapted to a highly variable
environment.

Rnf complexes The versatile electron transport chain of
the S. velum symbiont may utilize electron donors like
ferrodoxins, which have a redox potential as negative
as -500 mV [52], compared, for example, to −400 mV
of S2O3

2− and -270 mV of H2S. The reversible oxida-
tion of ferrodoxins coupled to the reduction of NAD+ in
the S. velum symbiont may be catalyzed by the H+ or/and
Na+-motive Rnf complexes (Figure 1) encoded in the gen-
ome by two complete rnfABCDGE (rnf1) and rnfBCDGEA
(rnf2) operons. The organization of these genes in the
operons is conserved with other bacteria, suggesting that
these clusters did not arise from duplication. Previously,
only Axotobacter vinelandii and Desulfobacterium auto-
trophicum were known to harbor two rnf operons [52].
Based on the presence of genes for pyruvate:ferredoxin
oxidoreductase located between rnfB2 and rnfC2, pyruvate
may serve as an electron donor for at least one of the Rnf
complexes. In general, rnf genes are distributed mainly
among obligate and facultative anaerobes, including many
pathogens that colonize oxygen-limited host tissues [52].
Together with the fact that ferrodoxins play a key role in
anaerobic metabolism [53], this suggests that the S. velum
symbiont, as well as other sequenced chemosynthetic
symbionts, which all contain rnf genes, may be capable of
facultative anaerobiosis.



Figure 4 Comparison of the sulfur oxidation genes between the S. velum symbiont and other SOB. (a) Presence of genes involved in
chemotrophic sulfur oxidation in the symbionts of S. velum, other sulfur-oxidizing bacteria and archaea, and sulfate reduction in D. autotrophicum,
which is included for comparison. Genes encoding pathways for reverse-acting dissimilatory sulfur-oxidation (rDsr) (Drs in D. autotrophicum) and
periplasmic sulfur-oxidation (Sox), as well as auxiliary proteins, are listed. Numbers of gene homologs in each organism are designated with color.
Presence of extra- or intracellular sulfur deposits, i.e., globules, in each organism, as obtained from literature, is indicated with hollow circles. The
abbreviations used, the respective full gene product names, and the corresponding NCBI protein ID references in the genome of the S. velum
symbiont are listed in Additional file 3: Table S3. (b) Presence of signal sequences and transmembrane domains in the sulfur-oxidations genes of
the S. velum symbiont, followed by the list of organisms with the closest known homologs to those genes and their respective BLASTP % identities
(Avi - Allochromatium vinosum, Sup05 - uncultivated oxygen minimum zone microbe [42], Sli - Sideroxydans lithotrophicus, and Thia - Thiocapsa marina,
Uncul - uncultured organism, Tsul - Thioalkalivibrio sulfidiphilus, Eper - R. pachyptila endosymbiont).
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Hydrogenases Hydrogen is another highly electron
negative reductant (−420 mV) that the S. velum symbiont
may harness for the reduction of the quinone and the
NAD+ cellular pools (Figure 1). Hydrogen oxidation is
suggested by the presence in the symbiont genome of hup
and hox2 operons encoding an uptake and a bidirectional
hydrogenase, respectively. The two subunits of the sym-
biont [Ni-Fe]-uptake hydrogenase, HupSL, are most simi-
lar in amino acid sequence to HupS and HupL proteins
from the symbionts of the tubeworms, R. pachyptila and
the T. jerichona, (73% and 78% identity for the S and L
subunits respectively), the sulfur bacterium, Thiocapsa
roseopersicina, (68 and 74%), and the symbionts of the
scaly-foot snail, C. squamiferum, (50 and 53%). In T. roseo-
persicina, HupSL has been experimentally demonstrated
to reduce quinones of the respiratory chain with H2

[54,55]. Unlike all the other γ-proteobacteria containing
HupSL, the hup operon in the S. velum symbiont does not
encode the di-heme cytochrome b, which is necessary to
link H2 oxidation to quinone reduction in the cellular
membrane [56]. However, a [Ni-Fe] hydrogenase cyto-
chrome b homolog was found on a different genomic scaf-
fold. Though this discordant gene organization is unlike
that in other H2 oxidizers, it is possible that the identified
cytochrome b may act in tandem with HupSL to enable
H2 oxidation.
Apart from potentially reducing the respiratory quin-

one pool with H2, the symbiont, by means of a bidirec-
tional hydrogenase, may produce H2 by oxidizing NAD+.
The S. velum symbiont Hox2FUYH enzyme complex is
most similar in amino acid sequence (63-66%) to the re-
cently-characterized NAD+-reducing [Ni-Fe]-hydrogen-
ase from T. roseopersicina, which can operate in reverse,
generating H2 when the high reduction state of the
dinucleotide pool is growth-limiting [57]. As H2 con-
centrations available to the S. velum symbiont have
not been measured, it is unknown whether the H2

oxidation contributes to primary production to the degree
that has been recently demonstrated in a hydrothermal
vent symbiosis [58].

Primary ion pumps NADH (−320 mV), potentially
derived from oxidation of H2 or heterotrophic meta-
bolism (see Heterotrophy) in the S. velum symbiont,
could be converted into an electrochemical gradient by
two NADH:quinone oxidoreductases. The genome of
the symbiont encodes the conventional H+-translocat-
ing quinone-reducing NADH dehydrogenase (NdhABC-
DEFGHIJKLMN), a homolog of the mitochondrial
Complex I, as well as an alternative Na+-translocating
NADH dehydrogenase (NqrABCDEF) (Figure 1). While
Complex I is ubiquitous in bacteria, Nqr is found mainly
in pathogenic and marine species [59]. Among symbiotic
bacteria, nqr genes have so far been described only in
Buchnera spp., an obligate endosymbiont of aphids
[60]. The S. velum symbiont may be able to switch be-
tween Complex I and Nqr, preferentially generating either
H+ or Na+ electrochemical gradients. Thus, depending on
the cellular requirements, the symbiont may synthesize
ATP (see ATP synthases) and regulate pH (see Ion gradi-
ent driven transporters) independently from each other.

Quinone reductases Apart from the electron donors
such as sulfur and NADH, the S. velum symbiont may
be able to directly reduce its quinone pool with a number
of other substrates. This is suggested by the presence of
genes encoding malate:quinone oxidoreductase (Mqo),
succinate dehydrogenase (ShdCDAB), homologous to
Complex II in mitochondria, and formate dehydrogenase-
O (FdoGHI) (Figure 1). This is the first report of FdoGHI
in a chemosynthetic symbiont genome. In E. coli this
enzyme, which is common to facultative anaerobes [61], is
used in formate-dependent oxygen respiration, allowing
the bacteria to rapidly adapt to shifts from aerobiosis to
anaerobiosis [62]. The presence of FdoGHI is additional
evidence that the S. velum symbiont may be capable of
facultative anaerobiosis (see Rnf complexes).
The genome-encoded quinol-cytochrome-c oxidoreduc-

tase (bc1, Complex III homologue) potentially links oxida-
tion of quinols to the generation of a proton membrane
gradient and the reduction of terminal electron acceptors
(Figure 1), discussed next.

Terminal oxygen reductases Similar to most aerobic
and microaerophilic bacteria, the genome of the S. velum
symbiont encodes three types of H+-motive terminal oxy-
gen reductases (Figure 1), which suggest a capacity to re-
spire O2 over a wide range of concentrations. The genome
contains a ccoNOQP operon encoding a cbb3 cytochrome
oxidase, which is known to function at nanomolar O2

concentrations in the nitrogen-fixing plant symbionts,
Bradyrhizobium japonicum [63], and in the microaero-
philic human pathogens, Campylobacter jejuni, Helicobac-
ter pylori, and Neisseria meningitidis [64]. The genome also
encodes a aa3 cytochrome oxidase (CoxAB), which is
thought to function primarily under atmospheric oxygen
concentrations [65] and is the only terminal oxidase in the
symbionts of the bivalves C. magnifica [22] and C. okutanii
[20]. The third terminal oxidase identified in the symbiont
genome is a cydAB-encoded quinol oxidase, which is
thought to oxidize quinols instead of cytochromes. CydAB
may operate when an excess of reductants, potentially
coming from the host, limits metabolic turnover and a
redox balance needs to be achieved [66]. The observed
diversity of terminal oxygen reductases indicates that the
supply of oxygen to the symbionts may fluctuate over time
or between free-living and symbiotic stages, necessitating
adjustments in respiratory metabolism.
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Alternative terminal reductases When oxygen is lim-
ited or unavailable, potentially either through competition
for oxygen with the host or if the symbionts find them-
selves in the anoxic sediment that surrounds the burrow,
the S. velum symbiont may be capable of using terminal
electron acceptors other than oxygen. Although it is un-
known whether the symbiont-containing gill bacteriocytes
ever become anaerobic, the presence of genes for peri-
plasmic NO3

− reductase (napFDAGHBC) suggests that
symbiont energy generation may involve electron transfer
to nitrate, which is available in the porewater surrounding
S. velum at concentrations of ~1-10 μM ([67], in prepar-
ation). The structure of the symbiont napFDAGHBC
operon is consistent with that of enteric bacteria that are
thought to use Nap for effectively scavenging nitrate dur-
ing anaerobic growth under nitrate-limited conditions
(5 μM) [68]. The symbiont genome also encodes a DMSO
reductase (dmsABC), which suggests an ability to respire
dimethyl sulfoxide (DMSO), a breakdown product of
dimethylsulfoniopropionate (DMSP) produced, for example,
by marine algae. DMSO is available at nanomolar concen-
trations in the coastal eutrophic environments inhabited
by S. velum [69], and Dms genes are common to many
marine sediment-dwelling bacteria, e.g., Beggiatoa and
Shewanella [70,71].
ATP synthases Based on the genome data, both H+ and
Na+ membrane gradients, established along the course
of the electron transport chain during respiration, may
drive ATP synthesis in the S. velum symbiont via either H+-
or Na+-dependent ATP synthases (Figure 1). The H+-speci-
ficity of the F0F1-type ATP synthase is suggested by the
presence of two characteristic transmembrane helixes
within the c subunit. In contrast, an A0A1-type ATP syn-
thase detected in the genome contains the characteristic
Na+-binding PXXXQ motif I and ES motif II in the rotor
subunit K. While proton-translocating ATP synthases are
predominant in bacteria, Na+-coupled ATP synthesis
driven by respiration has recently been recognized in some
marine and pathogenic species [72,73]. To our knowledge,
this is the first report of a Na+-translocating ATP syn-
thase in a chemosynthetic symbiont.
Ion gradient driven transporters Cellular roles of the
H+ and Na+ gradients in the S. velum symbiont appear
to extend beyond ATP synthesis. Besides ATP synthases,
the genome encodes diverse Na+:substrate symporters
and numerous Na+:H+ antiporters, including the multi-
subunit MrpEFGBBCDD complex (Figure 1). These trans-
porters, together with ATP synthases and respiratory ion
pumps, may establish and consume simultaneous trans-
membrane gradients of protons and sodium ions in the
symbiont [72]. These parallel cycles of H+ and Na+ would
allow the S. velum symbiont to synthesize ATP and main-
tain pH homeostasis via two separate mechanisms.

Carbon metabolism
Autotrophic carbon fixation, fueled chiefly by sulfur oxi-
dation, is the principal process in the S. velum symbiont,
supplying both the symbiont and the host with organic
carbon [14]. While previous studies focused primarily on
RuBisCO [10,74], the key enzyme of the Calvin cycle for
CO2 fixation and the most highly expressed gene in the
symbiont [40], our current analysis identified genes that
encode catalytic components required for CO2 fixation
and storage, including the pyrophosphate-dependent
phosphofructokinase, which has been hypothesized to
command a more energy efficient variant of the cycle
[22,75-77]. Furthermore, the genome of the S. velum
symbiont contains the gene for α-ketoglutarate dehydro-
genase – the key enzyme of the tricarboxylic acid cycle
(TCA), suggesting that the symbiont can respire organic
carbon and may not be obligately autotrophic.

Autotrophy The genome of the S. velum symbiont encodes
a version of the Calvin cycle which appears to be prevalent
in chemosynthetic symbionts but may also operate in a
few free-living bacteria [75-77]. In these organisms genes
for fructose 1,6-bisphosphatase and sedoheptulose 1,7-
bisphosphatase, which process obligate intermediates
in the cycle, are absent. Instead, the role of the missing
enzymes may be performed by a single reversible
pyrophosphate-dependent phosphofructokinase (PPi-PFK),
the gene for which was identified in the genome of
the S. velum symbiont (Figure 1). The ability of this
enzyme to dephosphorylate fructose 1,6-bisphosphate and
sedoheptulose 1,7-bisphosphate in vitro was demonstrated
for the PPi-PFK from Methylococcus capsulatus [75],
which shares 73% amino acid sequence identity with the
homologue from the S. velum symbiont. Notably, during
dephosphorylation this enzyme generates pyrophosphate,
which bears a high-energy phosphate bond unlike the
orthophosphate liberated by fructose 1,6-bisphosphatase
and sedoheptulose 1,7-bisphosphatase. In M. capsulatus
[75] and in the chemosynthetic symbionts of R. pachyptila
[76] and the oligochete, O. algarvensis [77], it was pro-
posed that the pyrophosphate produced this way could be
converted into a proton gradient by a membrane-bound
proton-pumping pyrophosphatase (V-type H+-PPase) co-
encoded with the PPi-PFK. This proton gradient could
then be used for ATP synthesis. Compared to the classical
Calvin cycle [78], this mechanism may allow bacteria to
spend up to 9.25% less energy on CO2 fixation [77]. Judg-
ing from the similar gene content, this version of the cycle
may also be at work in the symbionts of the vent clams, C.
magnifica [22] and C. okutanii [20]. Apart from the mem-
brane-bound V-type H+-PPase, the S. velum symbiont
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genome also encodes a soluble pyrophosphatase (PPase)
immediately upstream of the PPi-PFK gene. The PPase
cannot convert the energy of pyrophosphate into a proton
gradient but, by controlling the availability of pyrophos-
phate, may serve to regulate the catalytic direction of the
PPi-PFK, which may also participate in glycolysis as a kin-
ase. This additional PPase suggests that it may be import-
ant for the S. velum symbiont to control the direction of its
carbon flux to a higher degree than what has been seen in
other chemosynthetic symbionts.

Carbon Flux Carbon fixed by the S. velum symbiont
may be stored as polyglucose or fed into catabolic and
anabolic reactions (Figure 1). The overall direction of
the metabolic carbon flux in the symbiont can be con-
trolled by at least two putative mechanisms. First, the
reversible PPi-PFK, participating in the Calvin cycle
as discussed above, may also phosphorylate fructose
6-phosphate during glycolysis. PPi-PFK appears to be
the only enzyme encoded in the genome that could
catalyze both the forward and the reverse reactions. The
directionality of the catalysis may depend on the concen-
tration of pyrophosphate and the other substrates of the
enzyme in the cytoplasm [79], since this PPi-PFK is likely
nonallosteric [75]. Second, the two encoded glyceraldehyde
3-phosphate dehydrogenases, GapA and GapB, may be
specific to glycolysis and the Calvin cycle/gluconeogenesis,
respectively, by analogy to the homologous enzymes in
Staphylococcus aureus [80]. In the symbiont genome, gapB
is adjacent to the gene for transketolase, an enzyme in the
Calvin cycle, further suggesting that these two Gap pro-
teins may play a role in regulating the direction of the car-
bon flux either in the direction of glycolysis or the Calvin
cycle and gluconeogenesis. The symbionts of C. magnifica,
C. okutanii, R. pachyptila, T. jerichona, and the scaly snail
possess just a single gap gene, which has a much higher
amino acid sequence identity to gapB than to gapA from
the S. velum symbiont. In line of the above evidence the
symbiont of S. velum appears to be distinct from other
chemosynthetic symbionts in placing a stronger emphasis
on controlling the direction of its carbon flux.

Heterotrophy The S. velum symbiont is the third
chemosynthetic symbiont, along with the γ3-symbiont of
O. algarvensis [34] and the intracellular γ-proteobacterial
symbionts of the scaly-foot snail [33], known to encode all
of the enzymes required for the complete TCA cycle,
and, therefore, could oxidize organic carbon for energy
(Figure 1). All of the other sequenced chemosynthetic
symbionts lack genes for α-ketoglutarate dehydrogenase
and citrate synthase, which suggests their obligate autot-
rophy [81].
Furthermore, genes for the glyoxylate bypass of the

TCA cycle, encoding isocitrate lyase and malate synthase,
were also found in the genome of the S. velum symbiont
(Figure 1). These enzymes could allow the symbiont to
grow on various carbon sources, including acetate and
other two-carbon compounds, [82] or rapidly replenish
intermediates of biosynthetic reactions. The presence of
the glyoxylate bypass and the TCA cycle suggests that
the symbiont may be a facultative mixo- or hetero-
troph. The adaptive role of having both heterotrophic
pathways, however, is unclear, and may relate either to
the intracellular conditions specific to this particular sym-
biosis or to the yet unconfirmed host-free existence of the
symbiont.

Nitrogen metabolism
Ammonia, abundant in the sediment where S. velum
burrows, is the main form of nitrogen assimilated by the
symbiosis [83]. It has been suggested that the symbionts
incorporate ammonia into biomass, which is then trans-
ferred to the host ([67] in preparation), a process which
has been described for the chemosynthetic symbionts
of the hydrothermal vent tubeworm Ridgeia piscesae
[84]. The presence of assimilatory nitrogen pathways
in the S. velum symbiont genome corroborate this
hypothesis.

Nitrogen assimilation Extracellular ammonia may be
imported by the symbiont via specific AmtB transporters
and incorporated into glutamate and glutamine, which
serve as amino group donors for the other nitrogen-
containing compounds in the cell (Figure 1). The S. velum
symbiosis comes in contact with 20–100 μM concentra-
tion of ammonia in its coastal environment ([67] in prep-
aration). Thus, it is not surprising that, unlike the
chemosynthetic symbionts found at nitrate-rich (40 μM)
hydrothermal vents [85,86], the S. velum symbiont lacks
nar genes for nitrate reductases capable of assimilatory ni-
trate reduction [32,87-89]. Assimilation of ammonia has
been previously demonstrated in the gills of S. velum, but
was initially ascribed to the activity of the host glutamine
synthetase (GS) [88]. The present analysis identified glnA,
the gene that encodes GS, in the genome of the symbiont.
A preliminary transcriptional study showed glnA to be
one of the fifty most highly transcribed genes in the sym-
biont [40]. The biosynthetic pathways reconstructed on
the basis of gene content suggest that the symbiont has
the ability to make all of the 20 proteinogenic amino acids.
The amino acid prototrophy of the symbiont is in keeping
with its proposed role in providing most, if not all, of the
host’s nutrition [14,15].

Urea metabolism Host urea may serve as an additional
source of assimilatory nitrogen for the S. velum symbiont.
The identified ureHABCEFG operon encodes a cytoplas-
mic urease UreABC, which can hydrolyze urea, releasing
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ammonia that may be re-utilized by the symbiont. Urea
can enter the bacterial cell by passive diffusion [90], but
under nitrogen starvation the symbiont may be able to take
it up more rapidly via an ABC-transporter UrtABCDE,
encoded directly upstream of the ure genes. Among che-
mosynthetic symbionts, urease genes have been previously
described only in the γ-symbionts from the marine oligo-
chaete worm O. algarvensis [34,77], which, like S. velum,
lives in coastal sediments. The sequenced chemosynthetic
symbionts from hydrothermal vents lack urease genes,
even though some of their host organisms, for instance
R. pachyptila [91], are known to produce urea. This dis-
crepancy may be accounted for by the fact that in coastal
sediments urea is also present outside the host in the pore
water ([67] in preparation).

Taurine synthesis The S. velum symbiont may also pro-
vide its host with nitrogenous osmoregulants, such as
the non-proteinogenic amino acid taurine [92]. In the
host tissues, taurine accounts for up to 70% of the total
free amino acids and shows an isotopic composition
(δ13C, δ14N, δ34S) suggestive of symbiont origin [93].
Synthesis of taurine may be accomplished by the two
homologs of the reversible taurine dioxygenase (TauD)
encoded in the symbiont genome. Taurine could be
actively secreted to the host by the TauABCD ABC
transporter, the genes for which were found to contain a
conserved binding domain for sulfonate, characteristic
of the taurine molecule. Since taurine synthesis requires
sulfite [94], one of the final intermediates in sulfur
oxidation, this pathway could serve to dispose of SO3

2−,
and, thus, to drive forward sulfur oxidation in the S.
velum symbiont, benefiting both the host and the
symbiont.

Membrane-associated functions
The diversity of membrane-associated functions encoded
in the genome of the S. velum symbiont suggests that
the symbiont is fully autonomous of its host in this as-
pect of its physiology. Other bacteria, which, like the
symbiont, are thought to be obligately intracellular [17],
have lost genes required for the production of a cellu-
lar envelope, transport of solutes across the plasma
membrane, sensing of the extracellular environment, as
well as motility. These bacteria instead rely on their hosts
to perform these functions or no longer require them.

Production of cellular envelope
The S. velum symbiont appears capable of synthesizing
and assembling a cytoplasmic membrane, a peptidoglycan
layer (PG), and an outer membrane populated by lipo-
polysaccharides (LPS), which constitute a cellular enve-
lope. While these abilities are typical of the free-living
γ-proteobacteria, two aspects in particular stand out in
the context of the symbiotic life-style. First, given the
identified genes for the biosynthesis of fatty-acids, the
symbiont may build components of its plasma mem-
brane mostly from cis-vaccenic acid (18: lω7) (Figure 1).
According to a previous analysis of lipid composition
in S. velum [95], this unsaturated fatty acid and its deriv-
atives are the main constituents of cellular membranes in
the symbiont and the host alike. Furthermore, the
isotopic signature of the host’s lipids indicates that they
are bacterial in origin [95]. Second, the identified genes
for the synthesis of lipopolysaccharides (Figure 1) sug-
gest that the symbiont may be able to assemble the LPS
structures that are known to be sufficient for growth of
E. coli [96]. Most intracellular symbionts that live within
a host derived membrane, like the S. velum symbiont
[10], lack LPS biosynthetic genes and are unable to rep-
licate on their own [97]. However, the symbionts which
have the genes to synthesize LPS tend to either live dir-
ectly in the cytoplasm [97] and have to make their own
cellular envelope or, like the symbionts of R. pachyptila
[98], exist extracellularly for part of their life. Therefore,
the symbiont of S. velum may not only be able to make
a fully functional cellular envelope and supply some of
its components to its host, but may also be capable of
living outside the bacteriocytes.

Membrane transport
Transporters The number of transporters encoded in
the genome of the S. velum symbiont exceeds what has
been found in other intracellular bacteria (Table 2). The
diversity of genes for solute transport (Figure 1) suggests
that the symbiont has an extensive chemical communi-
cation with their environment. The S. velum symbiont
may use these transporters to import metabolic substrates
and enzyme cofactors and export products of its biosyn-
thesis to sustain the physiology of the host. It is known
that fixed organic carbon is transferred from the symbiont
to the host within minutes [99], which suggests a trans-
port mechanism, since direct digestion of symbionts
by host cells would likely take hours to days [100].
Such transport could be accomplished by exporters of
amino acids (EamA), carboxylates (CitT), and fatty acids
(FadLD), all of which are encoded in the genome. More-
over, some of the importers found in the genome may also
act as exporters, depending on the cellular environment
[101]. Thus, the S. velum symbiont maintains a repertoire
of transporters that may negotiate diverse chemical ex-
changes with the environment and, on the other hand,
allow it to provide nutrients to the host without being
digested.

Multi-drug efflux pumps The S. velum symbiont genome
contains at least five sets of genes encoding multi-drug ef-
flux pumps (AcrAB-TolC), suggesting the ability to expel



Table 2 Comparison of extracellular transport genes in the S. velum symbiont, other symbiotic and free-living bacteria

Organism Lifestyle Transporter
gene ratio to

S. velum
endosymbiont

Genome
size (Mb)

Total number
of genes

involved in
transport

Transporter
genes per
Mb of
genome

ATP-
dependent
transporters

Secondary
transporters

Phosphotransferase
systems

Ion
channels

Unclassified
transporters

Protein
secretion
systems

Outer
membrane
transporters

Solemya velum
endosymbiont

Intracellular
symbiont

1.00 2.7 224 75.2 100 70 1 5 5 17 26

C. magnifica
endosymbiont

OIS* 0.14 1.16 32 27.6 18 6 0 3 1 0 4

C. okutanii
endosymbiont

OIS 0.15 1.02 34 33.3 16 10 0 2 3 0 3

Buchnera
aphidicola APS

OIS 0.07 0.64 16 25.0 5 3 5 1 0 0 2

Sulcia muelleri GWSS OIS 0.03 0.25 7 28.0 4 2 0 0 0 0 1

Ca. Blochmannia
floridanus

OIS 0.12 0.71 27 38.0 7 12 3 2 0 0 3

Wigglesworthia
glossinidia

OIS 0.11 0.70 25 35.7 9 14 0 2 0 0 0

Baumannia
cicadellinicola

OIS 0.13 0.69 28 40.6 11 10 3 1 0 0 3

R. leguminosarum
bv. Viciae 3841

FIS* 2.47 7.75 553 71.4 281 203 7 18 2 13 29

Frankia alni ACN14a FIS 1.05 7.50 236 31.5 114 106 0 12 1 1 4

Vibrio fischeri
MJ11

Extracellular
symbiont

1.80 4.50 404 89.8 138 141 12 10 6 46 51

Wolbachia
pipientis wSim

OIS/parasite 0.21 1.06 48 45.3 19 28 0 0 1 8 0

Rickettsia prowazekii
MadridE

Intracellular
parasite

0.21 1.10 48 43.6 15 30 0 1 1 0 5

Escherichia coli
K-12-MG1655

Commensal 1.58 4.64 354 76.3 74 235 29 13 2 3 35

Klebsiella pneumoniae
kp342

Commensal 2.82 5.92 632 106.8 160 336 44 17 4 37 34

Thiomicrospira
crunogena XCL-2

Free-living
sulfide oxidizer

0.73 2.43 163 67.1 38 58 0 10 3 35 19

Allochromatium
vinosum DSM 180

Free-living
sulfide oxidizer

0.89 3.67 199 54.2 81 52 5 8 7 14 32

Sulfurimonas
denitrificans
DSM 1251

Free-living
sulfide oxidizer

0.43 2.20 97 44.1 32 52 0 10 3 6 25

Methylococcus
capsulatus Bath

Free-living
methanotroph

0.76 3.30 171 51.8 56 60 0 6 2 16 31

Thermodesulfovibrio
yellowstonii DSM 11347

Free-living
sulfate reducer

0.39 2.00 88 44.0 31 34 0 3 2 3 15

OIS - obligate intracellular symbiont; FIS - free-living intracellular symbiont.
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Table 3 ICE mobile genetic elements in the S. velum
symbiont genome

ICE element Copies Length, bp

ICEVchLao1 1 834

ICEVchBan7 1 432

ICEVchBan9 2 429, 888

ICEVchInd5 1 282

ICEVchMex1 1 561

ICEVflind1 2 405, 729

ICEPalBan1 1 1389

ICEPdaSpa1 5 300, 387, 622, 939, 3568

ICESpuPO1 3 549, 627, 648

ICEPmiUSA1 1 1290

Table 4 Insertion sequence mobile genetic elements in
the S. velum symbiont genome

Family/Element Copies Length, bp Terminal inverted repeats

IS30 30 1071 ATTCAA

IS3/IS407 18 1219 CCCCCA/CCCCCAA(C/T)AAGT

IS30 1 900 CAACCGTTTCAAT

IS5/IS5 1 1638 ACCCAAGGTA

IS481 1 1271 GAGACATCATTTACA

IS30 1 1137 TGATGTACGGGTCCGA

Unknown 1 1848 CCCCTTCG
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host-derived antimicrobial agents. A comparable genetic
capacity for the AcrAB-TolC efflux system has been found
in bacteria, such as the plant symbiont Rhizobium legumi-
nosarum, that have a free-living stage, but not in bacteria
that are obligately intracellular (Table 2, ATP-dependent
transporters). The plant host of R. leguminosarum manipu-
lates the cellular fate of its symbionts using antimicrobial-
like peptide factors [102]. As a result, R. leguminosarum
undergoes cell elongation and genome replication but
looses its ability to divide. Only a small number of R. legu-
minosarum cells remain vegetative [103]. A very similar
morphological differentiation of the symbiont has been ob-
served in S. velum [104]. Assuming the bivalve host also
uses peptide factors to control its symbiont, the S. velum
symbiont may rely on the efflux pumps to maintain a small
undifferentiated population in the bacteriocytes for trans-
mission to future host generations.

Sensory mechanisms and motility
The S. velum symbiont appears well equipped to sense
extracellular chemical changes, consistent with its inferred
ability to maintain a complex chemical exchange with the
environment. Over forty transmembrane chemoreceptors
are encoded in the genome of the symbiont. Almost half
of them have one or more conserved PAS domains and
therefore may play a role in sensing oxygen levels and
redox potentials. To relay sensory information, the major-
ity of the receptors contain either a diguanylate cyclase
(GGDEF) or a histidine kinase (HisKA) signaling domain.
Movement and surface attachment using type IV pili,
known as twitching motility, are the processes that may
be regulated by chemosensory signal transduction in the
S. velum symbiont (Figure 1). For example, in the genome
of the symbiont a chimeric gene containing PAS, GGDEF,
and cyclic-diguanylate receptor (EAL) domains is co-
located with pilEY1XWVT genes required to assemble a
functional pilus. Furthermore, the symbiont genome con-
tains pilGIJ-cheAW genes, which encode a transmembrane
chemotaxis sensor protein, HisKA, and a DNA-binding
response regulator, and are known to control twitching
motility in other bacteria [105]. The symbiont may use the
contractile pili to direct its movement in the environment
with regard to chemicals gradients, and, potentially,
also rely on the same mechanism to find and colonize
new hosts.

Mobile genetic elements
The S. velum symbiont genome contains two major
types of mobile elements, integrative and conjugative
elements (ICEs) and insertion sequences (IS). The genome
contains 25 insertions from 12 different ICE families
(Table 3) as well as 53 copies of four different IS elements
(Table 4). In total, these elements comprise 2.6% of the
genome. No gene interruptions were associated with these
elements. This large number and diversity of mobile
elements suggest that this bacterium may come into
contact with other bacterial lineages more often than
expected for most vertically transmitted intracellular
symbionts. Indeed, the abundance of mobile genetic
elements in bacterial genomes has been shown to cor-
relate with ecological niche. While there is considerable
overlap between the amounts of mobile elements hosted
by free-living and facultative intracellular bacteria, ob-
ligate intracellular bacteria that undergo faithful vertical
transmission consistently have few or no mobile ele-
ments [106].
Two hypothesized life and evolutionary history scenar-

ios may explain the observed mobile element content in
the S. velum symbiont. One of them is a relatively recent
shift to intracellularity, resulting in an expansion of mo-
bile elements [107,108]. Alternatively, the symbionts may
undergo regular or occasional horizontal transmissions
between hosts and at that time encounter opportunities
for recombination between strains. For example, sporadic
episodes of horizontal transmission in the primarily ma-
ternally transmitted insect symbiont, Wolbachia, have re-
sulted in the acquisition and maintenance of novel mobile
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elements [109,110]. In fact, horizontal transmission or
host-switching has likely occurred in the history of symbi-
onts of bivalves [111] including members of the genus
Solemya, as 16S rRNA phylogenetic analyses show that
these symbionts do not comprise a monophyletic clade
[5,11]. Additionally, many of the genes in the S. velum
symbiont genome are most closely related to disparate
bacterial taxa (Figure 3), suggesting that horizontal gene
transfer may have occurred in the past. These preliminary
lines of evidence support the hypothesis that horizontal
symbiont transmission has occurred. However, more
information is needed about the distribution and rela-
tionships of the mobile elements among intra-host and
inter-host S. velum symbiont populations before these
hypotheses can be differentiated.

Conclusions
Many of the features commonly encoded in the genomes
of chemosynthetic symbionts were observed in the gen-
ome of the S. velum symbiont alongside an array of
genes unique to this bacterium. Potential adaptations to
the symbiotic lifestyle, such as a more energy-efficient
version of the Calvin cycle, were shared with the other
sequenced chemosynthetic symbionts. The genes that
set the S. velum symbiont apart from the others were
those that encoded the TCA and the glyoxylate cycles,
DMSO and urea reductases, as well as the highly branched
electron transport chain. These functions may relate to
the fact that the S. velum symbiosis lives in eutrophic
sediment, unlike the oligotrophic environments inhabited
by other chemosynthetic symbioses, e.g., those of R.
pachyptila, C. magnifica, and O. algarvensis.
The S. velum symbiont has long been considered to be

vertically transmitted [17], but our genomic analyses are
inconsistent with predictions based on other vertically
transmitted obligately-intracellular bacteria. The S.
velum symbiont’s genetic repertoire is replete with genes
for chemosynthesis, heterotrophy, bioenergetics, nitro-
gen metabolism, cell maintenance, motility, communica-
tion, and exchange with the environment. Thus, with
regard to the functional gene content, but also the gen-
ome size and GC composition, the genome is more similar
to those of free-living sulfur-oxidizing bacteria (Table 1).
Furthermore, the genome contains mobile elements that
are comparable in numbers reported for horizontally-
transmitted obligately-intracellular bacteria. These diver-
gent lines of evidence suggest that the evolutionary life
history of the S. velum symbiont may be more compli-
cated than previously hypothesized. This could include,
but may not be limited to, an opportunistic generalist
lifestyle, a facultative symbiosis with a mixed trans-
mission mode, or a very recent obligate association
with the host for this clade of bacteria potentially on
a path to a new type of a cellular organelle.
Methods
Specimen collection and DNA preparation
S. velum individuals were collected by the staff of the
Marine Resource Center of the Marine Biological Labora-
tory (MBL), Woods Hole, MA from reducing sediment of
shallow eelgrass beds near Naushon Island, Woods Hole,
MA in 2006, 2007, and 2012. The collection was per-
formed in accordance with state collecting permit issued
by the Division of Marine Fisheries and in compliance
with all local, regional and federal regulations, including
the Convention on Biological Diversity and the Conven-
tion on the Trade in Endangered Species of Wild Fauna
and Flora. The excised gills were macerated in the labo-
ratory using a dounce homogenizer in 5 ml of 0.2 μm
filtered seawater (FSW) per bivalve. Homogenates were
passed through 100 μm and 5 μm nylon filters (Small
Parts Inc. #CMN-0105-A and CMN-0005-A) and cen-
trifuged at 5,000 × g for 5 minutes at 4°C. The pellet was
resuspended in FSW, pelleted, and resuspended in 1x
TAE buffer. 50 g molten 2% agarose (SeaKem® #50152)
in 1x TAE was added to make plugs for genomic DNA
extraction. The hardened plugs were treated with
DNAse I (0.25U/50 μl) at 37°C for 10 minutes and then
equilibrated in TE buffer for 30 minutes at room
temperature. Agarose plugs were further processed
using CHEF Mammalian Genomic DNA Plug Kit from
Bio-Rad Laboratories (#170-3591) according to the manu-
facturer’s instructions. The protocol for pulse field gel
electrophoresis (PFGE) and isolation of the bacterial
chromosomes from the agarose plugs was adapted from
Gil [112].

Genome sequencing and assembly
Genomic bacterial DNA was sequenced at the Institute
for Genomic Research (TIGR), the Joint Genome Institute
(JGI), and the University of California, Davis, using a di-
versity of sequencing technologies. Two Sanger libraries
of 3–4 Kb and 10–12 Kb insert sizes were constructed as
previously described [113]. Sequencing of these Sanger
libraries resulted in 110,187 reads with N50 of 969 bp and
the average coverage depth of 8x. Subsequently, using
Roche 454 technology, 387,143 sequencing reads with the
N50 of 207 bp and the average coverage depth of 13x were
obtained. Then, 25,635,107 Illumina sequencing reads
were generated. The Illumina sequences were 35 bp long
and had the average coverage depth of 150x. These
Sanger, Roche 454, and Illumina sequences were assem-
bled using the Paracel Genome Assembler (Paracel Inc.,
Pasadena, CA) into 68 contigs. Next, symbiont DNA was
sequenced using Pacific Biosciences (PacBio) technology,
resulting in 150,000 reads with N50 of 4,966 bp and 9x
coverage depth. The insertion and deletion (indels) errors,
typical of the PacBio data [114], were reduced from 4% to
0.2% with Illumina paired-end sequences (500x coverage)
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using PacBioToCA program [115] available as a part of
SMRT Analysis software package version 1.4 distributed
by the Pacific Biosciences [116]. The error correction step
also removed any PacBio sequences of the host origin,
which, given the abundance of the symbionts in the gill
tissue, had Illumina coverage below 5x. The Illumina data
used for the error correction were generated as part of a
different study and came from a specimen obtained at a
different location (Point Judith, RI) than the rest of
the genomic data. Due to the extent of the intra-species
genomic sequence variation across geographic localities
(Russell et al., in preparation), these Illumina data could
not be used to supplement the genome assembly but were
sufficient to correct the majority of sequencing indel
errors in the PacBio reads. The error-corrected 54,684
PacBio sequences with N50 of 1,409 bp were used to
connect the previous 68 genomic contigs into 30 larger
scaffolds using the Automated Hybrid Assembly (AHA)
module of SMRTAnalysis. The resulting 7 gaps within the
scaffolds, 2,272 bp in total, were then filled in with the
PacBio error-corrected sequences using the PBJelly soft-
ware tool [117], reducing the number of gaps to 4 and the
total gap length to 100 bp. After discarding 20 of the smal-
lest low coverage (2-9x) scaffolds that contained mostly
eukaryotic genes (>65%), identified as described below,
only 10 scaffolds were retained as a part of the symbiont
genome.

Sequence analysis
Open reading frames (ORFs) on S. velum symbiont scaf-
folds were predicted using Glimmer [118], Prodigal
[119], and GeneMarkS [120]. The software parameters
used to perform these analyses are listed in Additional
file 4: Table S4. Once identified, the ORFs were trans-
lated into protein-coding sequences and queried against
the UniProt Reference Clusters (UniRef90) (20 November
2013) [121], National Center for Biotechnology Infor-
mation non-redundant (NCBI-nr) (4 November 2013)
[122], and M5 non-redundant (M5-nr) (27 January 2014)
[123] databases for functional annotation using BLASTP
(e-value cutoff 0.001) [38]. UniRef90 gene entries sharing
the highest percent identity with the query and NCBI-nr
and M5-nr entries with the highest bit score match to the
query were retained for annotation. Genes predicted by
two or more methods (redundant) were considered the
same and collapsed into a single entry if they shared the
same start and stop position, orientation, and similar func-
tional annotations. Non-redundant entries (i.e., gene pre-
dictions unique to a given software) were also retained.
Finally, the above predictions and annotations were recon-
ciled with the genes predicted and annotated through the
Integrated Microbial Genomes Expert Review (IMG-ER)
pipeline [124]. Selected origins of replication were verified
by Ori-Finder [125]. The genes in the genome was assigned
taxa in the NCBI taxonomy based on the BLASTN [38]
searches (−best_hit_overhang 0.25, −best_hit_score_edge
0.05, −evalue 0.0001) against the NCBI-nr database (8 July
2014) computed with MEGAN 5.4.3 (maximum number
of matches per read 100; LCA parameters: minimal sup-
port 5, minimal score 35, top percent 10) [39]. Selected
promoters were identified with BPROM [126]. Signal pep-
tides and transmembrane domains were predicted using
SignalP 3.0 Server and TMHMM, respectively [127]. The
Genomic Utility for Automated Comparison (GUAC)
Python script (Additional file 5) was developed to inform
comparative analyses of gene content across multiple
genomes, in particular genes involved in sulfur-oxidation
(Figure 4) and extracellular transport (Table 2). The
GUAC software first identified those target genes in the
genomes of interest that were annotated with unam-
biguous gene symbols (e.g. soxA). Next, using amino
acid sequences of these genes as queries, BLASTP
searched for homologous sequences in the remaining tar-
get genomes (default cut-off values: bit score 50, identity
30%, alignment length over the source sequence 40%).
These sequences were aligned using ClustalW [128].
The alignments were used to manually verify the results
(e.g., based on known conserved domains, etc.). Mobile
genetic elements were detected by type. Insertion se-
quences were found using OASIS [129]. Integrative con-
jugative elements and plasmid as well as phage
sequences were identified by BLASTN [38] searches
against the ICEberg [130] and ACLAME [131] data-
bases, respectively (cut-off values: 250 nucleotides align-
ment length and 90% identity). To determine whether
mobile genetic elements interrupted open reading frames,
the nucleotide regions before and after each element were
concatenated and aligned to the NCBI-nr sequences using
BLASTN.

Availability of supporting data
This genome project has been deposited at DDBJ/EMBL/
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Additional files

Additional file 1: Table S1. Length [bp], GC%, percentage of the total
base pairs, and the number of genes in the scaffolds which constitute
the genome of the S. velum symbiont.

Additional file 2: Table S2. tRNA genes and the codon frequencies in
the genome of the S. velum symbiont.

Additional file 3: Table S3. Gene product names used in Figures 1 and
4, the corresponding NCBI protein ID reference numbers, and EC/TC
numbers.

Additional file 4: Table S4. Parameters of the gene prediction software.

Additional file 5: Genomic Utility for Automated Comparison (GUAC).
A Python script developed to inform comparative analyses of gene content
across multiple genomes.

http://www.biomedcentral.com/content/supplementary/1471-2164-15-924-S1.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-924-S2.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-924-S3.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-924-S4.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-924-S5.zip


Dmytrenko et al. BMC Genomics 2014, 15:924 Page 17 of 20
http://www.biomedcentral.com/1471-2164/15/924
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
OD performed the DNA isolation and the final genome assembly, developed
the Python GUAC script, carried out and coordinated the sequence analysis
and the manual annotation, and drafted the manuscript. SLR, WTL, KMF, LL,
and GR participated in the sequence analysis, the manual annotation, and
the drafting of the manuscript. FJS carried out the DNA isolation,
coordinated and participated in the gene prediction and the automated
annotation. RS performed the gene prediction and the automated
annotation. ILGN carried out the DNA isolation and participated in the
sequence analysis. TW and JAE coordinated and participated in the genome
sequencing, the initial genome assembly, and the preliminary gene
prediction and annotation. DW and JML performed the initial genome
assembly, gene prediction, and annotation. CMC and JAE conceived of the
study, participated in its design and coordination, and helped draft the
manuscript. All authors read and approved the final manuscript.

Acknowledgments
This work was funded by grant 0412205 of the US National Science
Foundation (NSF) and was made possible with the generous support of the
U.S. Department of Energy Joint Genome Institute (JGI). The work conducted
by JGI was supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. We would like to express
special thanks to Grace Pai for creating Sanger sequencing libraries and
Shannon Smith and Terry Utterback for coordinating sequencing at TIGR.

Author details
1Department of Organismic and Evolutionary Biology, Harvard University, 16
Divinity Avenue, 4081 Biological Laboratories, Cambridge, MA 02138, USA.
2Department of Civil and Environmental Engineering, Massachusetts Institute
of Technology, 15 Vassar Street, Cambridge, MA 02139, USA. 3SOA Key
Laboratory for Polar Science, Polar Research Institute of China, Shanghai
200136, China. 4Microbiology & Systems Biology Group, TNO, Utrechtseweg
48, Zeist, Utrecht 3704HE, The Netherlands. 5School of Biology, Georgia
Institute of Technology, Atlanta, GA 30332-0230, USA. 6Department of
Biology, Indiana University, 1001 East 3rd Street, Jordan Hall, Bloomington, IN
47405, USA. 7DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek,
CA 94598, USA. 8UC Davis Genome Center, 451 East Health Sciences Drive,
Davis, CA 95616-8816, USA.

Received: 3 April 2014 Accepted: 23 September 2014
Published: 23 October 2014

References
1. Sagan L: On the origin of mitosing cells. J Theor Biol 1967, 14:225–274.
2. Gonzalez A, Clemente JC, Shade A, Metcalf JL, Song S, Prithiviraj B, Palmer BE, Knight

R: Our microbial selves: what ecology can teach us. EMBO Rep 2011, 12:775–784.
3. Dilworth MJ, James EK, Sprent JI: Nitrogen-Fixing Leguminous Symbioses.

Kluwer Academic Pub; 2008.
4. Clark EL, Karley AJ, Hubbard SF: Insect endosymbionts: manipulators of

insect herbivore trophic interactions? Protoplasma 2010, 244:25–51.
5. Cavanaugh CM, McKiness Z, Newton I, Stewart FJ: Marine chemosynthetic

symbioses. In The Prokaryotes - Prokaryotic Biology and Symbiotic Associations.
3rd edition. Edited by Rosenberg E. 2013:579–607.

6. Toft C, Andersson SGE: Evolutionary microbial genomics: insights into
bacterial host adaptation. Nat Rev Genet 2010, 11:465–475.

7. Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, Lapidus
A, Wu D, McCutcheon JP, McDonald BR, Moran NA, Bristow J, Cheng J-F: One
bacterial cell, one complete genome. PLoS One 2010, 5:1–8.

8. Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K,
Woyke T, Hentschel U: Single-cell genomics reveals complex
carbohydrate degradation patterns in poribacterial symbionts of marine
sponges. ISME J 2013, 7:2287–2300.

9. Dubilier N, Bergin C, Lott C: Symbiotic diversity in marine animals: the art
of harnessing chemosynthesis. Nat Rev Micro 2008, 6:725–740.

10. Cavanaugh CM: Symbiotic chemoautotrophic bacteria in marine
invertebrates from sulphide-rich habitats. Nature 1983, 302:58–61.

11. Eisen JA, Smith SW, Cavanaugh CM: Phylogenetic relationships of
chemoautotrophic bacterial symbionts of Solemya velum say
(Mollusca: Bivalvia) determined by 16S rRNA gene sequence analysis.
J Bacteriol 1992, 174:3416–3421.

12. Cavanaugh CM, Abbott M, Veenhuis M: Immunochemical localization of
ribulose-1, 5-bisphosphate carboxylase in the symbiont-containing gills of
Solemya velum (Bivalvia: Mollusca). P Natl Acad Sci USA 1988, 85:7786–7789.

13. Scott KM, Cavanaugh CM: CO2 uptake and fixation by endosymbiotic
chemoautotrophs from the bivalve Solemya velum. Appl Environ Microb
2007, 73:1174–1179.

14. Conway N, Capuzzo J, Fry B: The role of endosymbiotic bacteria in the
nutrition of Solemya velum: evidence from a stable isotope analysis of
endosymbionts and host. Limnol Oceanogr 1989, 34:249–255.

15. Krueger DM, Gallager S, Cavanaugh CM: Suspension feeding on
phytoplankton by Solemya velum, a symbiont-containing clam.
Mar Ecol-Prog Ser 1992, 86:145–151.

16. Cary SC: Vertical transmission of a chemoautotrophic symbiont in the
protobranch bivalve, Solemya reidi. Mol Mar Biol Biotechnol 1994, 3:121–130.

17. Krueger DM, Gustafson RG, Cavanaugh CM: Vertical transmission of
chemoautotrophic symbionts in the bivalve Solemya velum
(Bivalvia: Protobranchia). Biol Bull 1996, 190:195–202.

18. Peek A, Vrijenhoek R, Gaut B: Accelerated evolutionary rate in
sulfur-oxidizing endosymbiotic bacteria associated with the mode of
symbiont transmission. Mol Biol Evol 1998, 15:1514.

19. Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC: Coupling of bacterial
endosymbiont and host mitochondrial genomes in the hydrothermal
vent clam Calyptogena magnifica. Appl Environ Microb 2003,
69:2058–2064.

20. Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S, Harada M,
Matsuyama K, Takishita K, Kawato M, Uematsu K: Reduced genome of the
thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena
okutanii. Curr Biol 2007, 17:881–886.

21. Kuwahara H, Takaki Y, Yoshida T, Shimamura S, Takishita K, Reimer JD,
Kato C, Maruyama T: Reductive genome evolution in chemoautotrophic
intracellular symbionts of deep-sea Calyptogena clams. Extremophiles
2008, 12:365–374.

22. Newton I, Woyke T, Auchtung T, Dilly G, Dutton R, Fisher M, Fontanez K,
Lau E, Stewart FJ, Richardson P: The Calyptogena magnifica
chemoautotrophic symbiont genome. Science 2007, 315:998–1000.

23. Newton I, Girguis PR, Cavanaugh CM: Comparative genomics of
vesicomyid clam (Bivalvia: Mollusca) chemosynthetic symbionts.
BMC Genomics 2008, 9:585.

24. Peek A, Feldman R, Lutz R, Vrijenhoek R: Cospeciation of
chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci U S A
1998, 95:9962.

25. Stewart FJ, Young CR, Cavanaugh CM: Lateral symbiont acquisition
in a maternally transmitted chemosynthetic clam endosymbiosis.
Mol Biol Evol 2008, 25:673–687.

26. Stewart FJ, Young C, Cavanaugh CM: Evidence for homologous
recombination in intracellular chemosynthetic clam symbionts.
Mol Biol Evol 2009, 26:1391–1404.

27. Stewart FJ, Baik AHY, Cavanaugh CM: Genetic subdivision of
chemosynthetic endosymbionts of Solemya velum along the Southern
New England coast. Appl Environ Microb 2009, 75:6005–6007.

28. Krueger DM, Cavanaugh CM: Phylogenetic diversity of bacterial symbionts
of Solemya hosts based on comparative sequence analysis of 16S rRNA
genes. Appl Environ Microb 1997, 63:91.

29. Moran NA: Accelerated evolution and Muller’s rachet in endosymbiotic
bacteria. Proc Natl Acad Sci U S A 1996, 93:2873–2878.

30. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA,
Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ,
Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y,
Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT,
Nelson KE, Tettelin H, O’Neill SL, Eisen JA: Phylogenomics of the
reproductive parasite Wolbachia pipientis wMel: a streamlined genome
overrun by mobile genetic elements. PLoS Biol 2004, 2:E69.

31. Robidart J, Bench S, Feldman R, Novoradovsky A, Podell S, Gaasterland T,
Allen E, Felbeck H: Metabolic versatility of the Riftia pachyptila
endosymbiont revealed through metagenomics. Environ Microbiol 2008,
10:727–737.

32. Gardebrecht A, Markert S, Sievert SM, Felbeck H, Thürmer A, Albrecht D,
Wollherr A, Kabisch J, Le Bris N, Lehmann R, Daniel R, Liesegang H, Hecker
M, Schweder T: Physiological homogeneity among the endosymbionts of



Dmytrenko et al. BMC Genomics 2014, 15:924 Page 18 of 20
http://www.biomedcentral.com/1471-2164/15/924
Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics.
ISME J 2012, 6:766–776.

33. Nakagawa S, Shimamura S, Takaki Y, Suzuki Y, Murakami S-I, Watanabe T,
Fujiyoshi S, Mino S, Sawabe T, Maeda T, Makita H, Nemoto S, Nishimura S-I,
Watanabe H, Watsuji T-O, Takai K: Allying with armored snails: the
complete genome of gammaproteobacterial endosymbiont. ISME J
2014, 8:40–51.

34. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO,
Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC,
Mussmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N:
Symbiosis insights through metagenomic analysis of a microbial
consortium. Nature 2006, 443:950–955.

35. Wu M, Eisen JA: A simple, fast, and accurate method of phylogenomic
inference. Genome Biol 2008, 9:1–11.

36. Murphy FV, Ramakrishnan V: Structure of a purine-purine wobble base
pair in the decoding center of the ribosome. Nat Struct Mol Biol 2004,
11:11251–11252.

37. Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein
families. Science 1997, 278:631–637.

38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215:403–410.

39. Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC: Integrative
analysis of environmental sequences using MEGAN4. Genome Res 2011,
21:1552–1560.

40. Stewart FJ, Dmytrenko O, DeLong E: Metatranscriptomic analysis of sulfur
oxidation genes in the endosymbiont of Solemya velum. Frontiers
Microbiol 2011, 2:1–10.

41. Frigaard N-U, Dahl C: Sulfur metabolism in phototrophic sulfur bacteria.
Adv Microb Physiol 2009, 54:103–200.

42. Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, Tortell PD,
Hallam SJ: Metagenome of a versatile chemolithoautotroph from
expanding oceanic dead zones. Science 2009, 326:578–582.

43. Dahl C, Prange A: Bacterial sulfur globules: occurrence, structure and
metabolism. In Inclusions in Prokaryotes Microbiology Monographs, Volume
1. 2006:21–51.

44. Friedrich C, Bardischewsky F, Rother D, Quentmeier A, Fischer J:
Prokaryotic sulfur oxidation. Curr Opin Microbiol 2005, 8:253–259.

45. Fisher C, Childress J, ARP A, BROOKS J, DISTEL D, Favuzzi J, Macko S,
Newton A, Powell M, Somero G, SOTO T: Physiology, morphology, and
biochemical composition of Riftia pachyptila at Rose Garden in 1985.
Deep-Sea Res 1988, 35:1745–1758.

46. Vetter RD: Elemental sulfur in the gills of three species of clams
containing chemoautotrophic symbiotic bacteria: a possible inorganic
energy storage compound. Mar Biol 1985, 88:33–42.

47. Childress JJ, Girguis PR: The metabolic demands of endosymbiotic
chemoautotrophic metabolism on host physiological capacities.
J Exp Biol 2011, 214:312–325.

48. Cort JR, Selan U, Schulte A, Grimm F, Kennedy MA, Dahl C: Allochromatium
vinosum DsrC: Solution-state NMR structure, redox properties, and
interaction with DsrEFH, a protein essential for purple sulfur bacterial
sulfur oxidation. J Mol Biol 2008, 382:692–707.

49. Oliveira TF, Vonrhein C, Matias PM, Venceslau SS, Pereira IAC, Archer M:
Purification, crystallization and preliminary crystallographic analysis of a
dissimilatory DsrAB sulfite reductase in complex with DsrC. J Struct Biol
2008, 164:236–239.

50. Ghosh W, Dam B: Biochemistry and molecular biology of lithotrophic
sulfur oxidation by taxonomically and ecologically diverse bacteria and
archaea. Fems Microbiol Rev 2009, 33:999–1043.

51. Chen C, Rabourdin B, Hammen C: The effect of hydrogen sulfide on the
metabolism of Solemya velum and enzymes of sulfide oxidation in gill
tissue. Comp Biochem Physiol B Biochem Mol Biol 1987, 88:949–952.

52. Biegel E, Schmidt S, González JM, Müller V: Biochemistry, evolution and
physiological function of the Rnf complex, a novel ion-motive electron
transport complex in prokaryotes. Cell Mol Life Sci 2011, 68:613–634.

53. Bruschi M, Guerlesquin F: Structure, function and evolution of bacterial
ferredoxins. Fems Microbiol Rev 1988, 4:155–175.

54. Kovács KL, Kovács AT, Maróti G, Mészáros LS, Balogh J, Latinovics D,
Fülöp A, Dávid R, Dorogházi E, Rákhely G: The hydrogenases of Thiocapsa
roseopersicina. Biochem Soc Trans 2005, 33:61–63.

55. Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones A, Albracht S,
Friedrich B: [NiFe]-hydrogenases of Ralstonia eutropha H16: Modular
enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microb
Biotech 2005, 10:181–196.

56. Vignais PM, Billoud B: Occurrence, classification, and biological function of
hydrogenases: an overview. Chem Rev 2007, 107:4206–4272.

57. Maroti J, Farkas A, Nagy IK, Maroti G, Kondorosi E, Rakhely G, Kovacs KL:
A second soluble hox-type nife enzyme completes the hydrogenase
set in Thiocapsa roseopersicina BBS. Appl Environ Microbiol 2010, 76:5113–5123.

58. Petersen JM, Zielinski FU, Pape T, Seifert R, Moraru C, Amann R, Hourdez S,
Girguis PR, Wankel SD, Barbe V, Pelletier E, Fink D, Borowski C, Bach W,
Dubilier N: Hydrogen is an energy source for hydrothermal vent
symbioses. Nature 2011, 476:176–180.

59. Bogachev AV, Verkhovsky MI: Na+-translocating NADH: quinone
oxidoreductase: progress achieved and prospects of investigations.
Biochem (Moscow) 2005, 70:143–149.

60. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H: Genome
sequence of the endocellular bacterial symbiont of aphids Buchnera sp.
APS. Nature 2000, 407:81–86.

61. Pickering BS, Oresnik IJ: Formate-dependent autotrophic growth in
Sinorhizobium meliloti. J Bacteriol 2008, 190:6409.

62. Benoit S, Abaibou H, Mandrand-Berthelot M-A: Topological analysis of the
aerobic membrane-bound formate dehydrogenase of Escherichia coli.
J Bacteriol 1998, 180:6625.

63. Preisig O, Zufferey R, Thony-Meyer L, Appleby C, Hennecke H:
A high-affinity cbb3-type cytochrome oxidase terminates the
symbiosis- specific respiratory chain of Bradyrhizobium japonicum.
J Bacteriol 1996, 178:1532.

64. Pitcher RS, Watmough NJ: The bacterial cytochrome cbb3 oxidases.
Biochim Biophys Acta Bioenerg 2004, 1655:388–399.

65. Nunoura T, Sako Y, Wakagi T, Uchida A: Regulation of the aerobic
respiratory chain in the facultatively aerobic and hyperthermophilic
archaeon Pyrobaculum oguniense. Microbiol (Reading, Engl) 2003,
149:673–688.

66. Otten MF, Stork DM, Reijnders WN, Westerhoff HV, Van Spanning RJ:
Regulation of expression of terminal oxidases in Paracoccus denitrificans.
Eur J Biochem 2001, 268:2486–2497.

67. Krueger DM, Roeselers G, Sigman D, Cavanaugh CM: Nitrogen nutrition in
the symbiosis Solemya velum. in preparation.

68. Potter LC, Millington P, Griffiths L, Thomas GH, Cole JA: Competition
between Escherichia coli strains expressing either a periplasmic or a
membrane-bound nitrate reductase: does Nap confer a selective
advantage during nitrate-limited growth? Biochem J 1999, 344(Pt 1):77–84.

69. Zemmelink H, Houghton L, Sievert S, Frew N, Dacey J: Gradients in
dimethylsuffide, dimethylsulfoniopropionate, dimethylsulfoxide, and
bacteria near the sea surface. Mar Ecol-Prog Ser 2005, 295:33–42.

70. Mussmann M, Hu FZ, Richter M, de Beer D, Preisler A, Jorgensen BB,
Huntemann M, Gloeckner FO, Amann R, Koopman WJH, Lasken RS, Janto B,
Hogg J, Stoodley P, Boissy R, Ehrlich GD: Insights into the genome of large
sulfur bacteria revealed by analysis of single filaments. PLoS Biol 2007,
5:1923–1937.

71. McCrindle SL, Kappler U, McEwan AG: Microbial dimethylsulfoxide and
trimethylamine-N-oxide respiration. Adv Microb Physiol 2005, 50:147–198.

72. Häse CC, Fedorova ND, Galperin MY, Dibrov PA: Sodium ion cycle in
bacterial pathogens: evidence from cross-genome comparisons.
Microbiol Mol Biol Rev 2001, 65:353–370. table of contents.

73. Mulkidjanian AY, Dibrov P, Galperin MY: The past and present of sodium
energetics: may the sodium-motive force be with you. Biochim Biophys
Acta 2008, 1777:985–992.

74. Robinson J, Cavanaugh CM: Expression of form I and form II Rubisco in
chemoautotrophic symbioses: implications for the interpretation of
stable carbon isotope values. Limnol Oceanogr 1995, 40:1496–1502.

75. Reshetnikov AS, Rozova ON, Khmelenina VN, Mustakhimov II, Beschastny AP,
Murrell JC, Trotsenko YA: Characterization of the pyrophosphate-
dependent 6-phosphofructokinase from Methylococcus capsulatus Bath.
FEMS Microbiol Lett 2008, 288:202–210.

76. Markert S, Gardebrecht A, Felbeck H, Sievert SM, Klose J, Becher D,
Albrecht D, Thürmer A, Daniel R, Kleiner M, Hecker M, Schweder T:
Status quo in physiological proteomics of the uncultured Riftia
pachyptila endosymbiont. Proteomics 2011, 11:3106–3117.

77. Kleiner M, Wentrup C, Lott C, Teeling H, Wetzel S, Young J, Chang Y-J,
Shah M, VerBerkmoes NC, Zarzycki J, Fuchs G, Markert S, Hempel K, Voigt B,
Becher D, Liebeke M, Lalk M, Albrecht D, Hecker M, Schweder T, Dubilier N:



Dmytrenko et al. BMC Genomics 2014, 15:924 Page 19 of 20
http://www.biomedcentral.com/1471-2164/15/924
Metaproteomics of a gutless marine worm and its symbiotic microbial
community reveal unusual pathways for carbon and energy use.
Proc Natl Acad Sci 2012, 109:E1173–E1182.

78. Bassham J, Benson A, Calvin M: The path of carbon in photosynthesis.
J Biol Chem 1950, 185:781–787.

79. Fenton A, Paricharttanakul N, Reinhart G: Identification of substrate
contact residues important for the allosteric regulation of
phosphofructokinase from Eschericia coli. Biochemistry 2003,
42:6453–6459.

80. Purves J, Cockayne A, Moody PCE, Morrissey JA: Comparison of the
regulation, metabolic functions, and roles in virulence of the
glyceraldehyde-3-phosphate dehydrogenase homologues gapA and
gapB in Staphylococcus aureus. Infect Immun 2010, 78:5223–5232.

81. Wood AP, Aurikko JP, Kelly DP: A challenge for 21st century molecular
biology and biochemistry: what are the causes of obligate autotrophy
and methanotrophy? Fems Microbiol Rev 2004, 28:335–352.

82. Han SO, Inui M, Yukawa H: Effect of carbon source availability and growth
phase on expression of Corynebacterium glutamicum genes involved in
the tricarboxylic acid cycle and glyoxylate bypass. Microbiology 2008,
154:3073–3083.

83. Lee R, Thuesen E, Childress J: Ammonium and free amino acids as
nitrogen sources for the chemoautotrophic symbiosis Solemya reidi
Bernard (Bivalvia: Protobranchia). J Exp Mar Biol Ecol 1992, 158:75–91.

84. Liao L, Wankel SD, Wu M, Cavanaugh CM, Girguis PR: Characterizing the
plasticity of nitrogen metabolism by the host and symbionts of the
hydrothermal vent chemoautotrophic symbioses Ridgeia piscesae.
Mol Ecol 2013.

85. Lee RW, Childress JJ: Assimilation of inorganic nitrogen by marine
invertebrates and their chemoautotrophic and methanotrophic
symbionts. Appl Environ Microb 1994, 60:1852–1858.

86. Bourbonnais A, Lehmann MF, Butterfield DA, Juniper SK: Subseafloor
nitrogen transformations in diffuse hydrothermal vent fluids of the Juan
de Fuca Ridge evidenced by the isotopic composition of nitrate and
ammonium. Geochem Geophys Geosyst 2012, 13:1–23.

87. Hentschel U, Felbeck H: Nitrate respiration in the hydrothermal vent
tubeworm Riftia pachyptila. Nature 1993, 366:338–340.

88. Lee R, Robinson J, Cavanaugh CM: Pathways of inorganic nitrogen
assimilation in chemoautotrophic bacteria-marine invertebrate
symbioses: expression of host and symbiont glutamine synthetase.
J Exp Biol 1999, 202(Pt 3):289–300.

89. Girguis PR, Lee RW, Desaulniers N, Childress JJ, Pospesel M, Felbeck H,
Zal F: Fate of nitrate acquired by the tubeworm Riftia pachyptila.
Appl Environ Microbiol 2000, 66:2783–2790.

90. Beckers G, Bendt AK, Kramer R, Burkovski A: Molecular identification of the
urea uptake system and transcriptional analysis of urea transporter and
urease-encoding genes in Corynebacterium glutamicum. J Bacteriol 2004,
186:7645.

91. De Cian M, Regnault M, Lallier FH: Nitrogen metabolites and related
enzymatic activities in the body fluids and tissues of the hydrothermal
vent tubeworm Riftia pachyptila. J Exp Biol 2000, 203:2907–2920.

92. Joyner JL, Peyer SM, Lee RW: Possible roles of sulfur-containing amino
acids in a chemoautotrophic bacterium-mollusc symbiosis. Biol Bull 2003,
205:331–338.

93. Conway N, Howes B, McDowell Capuzzo J, Turner R, Cavanaugh CM:
Characterization and site description of Solemya borealis
(Bivalvia; Solemyidae), another bivalve-bacteria symbiosis. Mar Biol 1992,
112:601–613.

94. Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T: Characterization of
alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia
coli. J Biol Chem 1997, 272:23031–23036.

95. Conway N, McDowell Capuzzo J: Incorporation and utilization of bacterial
lipids in the Solemya velum symbiosis. Mar Biol 1991, 108:277–291.

96. Karow M, Georgopoulos C: Isolation and characterization of the
Escherichia coli msbB gene, a multicopy suppressor of null
mutations in the high-temperature requirement gene htrB. J Bacteriol
1992, 174:702–710.

97. Moran N, McCutcheon J, Nakabachi A: Genomics and evolution of
heritable bacterial symbionts. Annu Rev Genet 2008, 42:165–190.

98. Nussbaumer AD, Fisher CR, Bright M: Horizontal endosymbiont
transmission in hydrothermal vent tubeworms. Nature 2006,
441:345–348.
99. Cavanaugh CM: Symbiosis of chemoautotrophic bacteria and marine
invertebrates. In PhD Thesis. Cambridge, MA, USA: Harvard University,
Department of Organismic and Evolutionary Biology; 1985.

100. Fisher C, Childress J: Organic carbon transfer from methanotrophic
symbionts to the host hydrocarbon-seep mussel. Symbiosis 1992,
12:221–235.

101. Saurin W, Hofnung M, Dassa E: Getting in or out: early segregation
between importers and exporters in the evolution of ATP-binding
cassette (ABC) transporters. J Mol Evol 1999, 48:22–41.

102. van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z,
Farkas A, Mikulass K, Nagy A, Tiricz H: Plant peptides govern terminal
differentiation of bacteria in symbiosis. Science 2010, 327:1122–1125.

103. Paau AS, Bloch CB, Brill WJ: Developmental fate of Rhizobium meliloti
bacteroids in alfalfa nodules. J Bacteriol 1980, 143:1480–1490.

104. Stewart FJ, Cavanaugh CM: Bacterial endosymbioses in Solemya
(Mollusca: Bivalvia)—model systems for studies of symbiont–host
adaptation. Antonie Van Leeuwenhoek 2006, 90:343–360.

105. Whitchurch CB, Leech AJ, Young MD, Kennedy D, Sargent JL, Bertrand JJ,
Semmler ABT, Mellick AS, Martin PR, Alm RA, Hobbs M, Beatson SA,
Huang B, Nguyen L, Commolli JC, Engel JN, Darzins A, Mattick JS:
Characterization of a complex chemosensory signal transduction
system which controls twitching motility in Pseudomonas aeruginosa.
Mol Microbiol 2004, 52:873–893.

106. Newton ILG, Bordenstein SR: Correlations between bacterial ecology and
mobile DNA. Curr Microbiol 2011, 62:198–208.

107. Plague GR, Dunbar HE, Tran PL, Moran NA: Extensive proliferation of
transposable elements in heritable bacterial symbionts. J Bacteriol 2008,
190:777–779.

108. Gil R, Latorre A, Moya A: Evolution of prokaryote-animal symbiosis from a
genomics perspective. In Microbiology Monographs, Volume 19. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2010:207–233.

109. Cordaux R, Pichon S, Ling A, Pérez P, Delaunay C, Vavre F, Bouchon D, Grève P:
Intense transpositional activity of insertion sequences in an ancient obligate
endosymbiont. Mol Biol Evol 2008, 25:1889–1896.

110. Chafee ME, Funk DJ, Harrison RG, Bordenstein SR: Lateral phage transfer in
obligate intracellular bacteria (wolbachia): verification from natural
populations. Mol Biol Evol 2010, 27:501–505.

111. Roeselers G, Newton ILG: On the evolutionary ecology of symbioses
between chemosynthetic bacteria and bivalves. Appl Microbiol Biotechnol
2012, 94:1–10.

112. Gil R, Sabater-Muñoz B, Latorre A, Silva FJ, Moya A: Extreme genome
reduction in Buchnera spp.: toward the minimal genome needed for
symbiotic life. Proc Natl Acad Sci U S A 2002, 99:4454–4458.

113. Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ,
Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA: Metabolic
complementarity and genomics of the dual bacterial symbiosis of
sharpshooters. PLoS Biol 2006, 4:1079–1092.

114. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P,
Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S,
Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C,
Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, et al:
Real-time DNA sequencing from single polymerase molecules.
Science 2009, 323:133–138.

115. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G,
Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy AM: Hybrid error
correction and de novo assembly of single-molecule sequencing reads.
Nat Biotechnol 2012.

116. Pacific Biosciences. [http://www.pacb.com]
117. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid

JG, Worley KC, Gibbs RA: Mind the Gap: Upgrading Genomes with Pacific
Biosciences RS Long-Read Sequencing Technology. PLoS ONE 2012,
7:e47768.

118. Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes and
endosymbiont DNA with Glimmer. Bioinformatics 2007, 23:673–679.

119. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal:
prokaryotic gene recognition and translation initiation site identification.
BMC Bioinformatics 2010, 11:1–11.

120. Besemer J, Lomsadze A, Borodovsky M: GeneMarkS: a self-training method
for prediction of gene starts in microbial genomes. Implications for
finding sequence motifs in regulatory regions. Nucleic Acids Res 2001,
29:2607.

http://www.pacb.com


Dmytrenko et al. BMC Genomics 2014, 15:924 Page 20 of 20
http://www.biomedcentral.com/1471-2164/15/924
121. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH: UniRef:
comprehensive and non-redundant UniProt reference clusters.
Bioinformatics 2007, 23:1282–1288.

122. Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I: RefSeq microbial
genomes database: new representation and annotation strategy.
Nucleic Acids Res 2014, 42:D553–D559.

123. Wilke A, Harrison T, Wilkening J, Field D, Glass EM, Kyrpides N, Mavrommatis
K, Meyer F: The M5nr: a novel non-redundant database containing pro-
tein sequences and annotations from multiple sources and associated
tools. BMC Bioinformatics 2012, 13:1–5.

124. Standard operating procedure for the annotations of genomes and
metagenomes submitted to the integrated microbial genomes expert
review (IMG-ER) system. [http://img.jgi.doe.gov/w/doc/img_er_ann.pdf]

125. Gao F, Zhang C-T: Ori-Finder: A web-based system for finding oriCs in
unannotated bacterial genomes. BMC Bioinformatics 2009, 9:1–6.

126. Bprom. [http://www.softberry.com]
127. Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the

cell using TargetP, SignalP and related tools. Nat Protoc 2007, 2:953–971.
128. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam

H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ,
Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007,
23:2947–2948.

129. Robinson DG, Lee M-C, Marx CJ: OASIS: an automated program for global
investigation of bacterial and archaeal insertion sequences. Nucleic Acids
Res 2012, 40:e174.

130. Bi D, Xu Z, Harrison EM, Tai C, Wei Y, He X, Jia S, Deng Z, Rajakumar K,
Ou H-Y: ICEberg: a web-based resource for integrative and
conjugative elements found in Bacteria. Nucleic Acids Res 2012,
40(Database issue):D621–D626.

131. Leplae R, Lima-Mendez G, Toussaint A: ACLAME: a CLAssification of
Mobile genetic Elements, update 2010. Nucleic Acids Res 2010,
38(Database issue):D57–D61.

doi:10.1186/1471-2164-15-924
Cite this article as: Dmytrenko et al.: The genome of the intracellular
bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving
in and out of symbiosis. BMC Genomics 2014 15:924.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://img.jgi.doe.gov/w/doc/img_er_ann.pdf
http://www.softberry.com

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	General genome features
	Metabolic functions
	Chemolithotrophy
	Bioenergetics
	Carbon metabolism
	Nitrogen metabolism

	Membrane-associated functions
	Production of cellular envelope
	Membrane transport
	Sensory mechanisms and motility

	Mobile genetic elements

	Conclusions
	Methods
	Specimen collection and DNA preparation
	Genome sequencing and assembly
	Sequence analysis
	Availability of supporting data

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

