527 research outputs found

    Interventions to Improve Vaccination Uptake and Cost Effectiveness of Vaccination Strategies in Newly Arrived Migrants in the EU/EEA: A Systematic Review.

    Get PDF
    Newly arrived migrants to the EU/EEA (arrival within the past five years), as well as other migrant groups in the region, might be under-immunised and lack documentation of previous vaccinations, putting them at increased risk of vaccine-preventable diseases circulating in Europe. We therefore performed a systematic review conforming to PRISMA guidelines (PROSPERO CRD42016045798) to explore: (i) interventions that improve vaccine uptake among migrants; and (ii) cost-effectiveness of vaccination strategies among this population. We searched MEDLINE, Embase, CINAHL, and Cochrane Database of Systematic Reviews (CDSR) between 1 January 2006 to 18 June 2018. We included three primary intervention studies performed in the EU/EEA or high-income countries and one cost effectiveness study relevant to vaccinations in migrants. Intervention studies showed small but promising impact only on vaccine uptake with social mobilization/community outreach, planned vaccination programs and education campaigns. Targeting migrants for catch-up vaccination is cost effective for presumptive vaccination for diphtheria, tetanus, and polio, and there was no evidence of benefit of carrying out pre-vaccination serological testing. The cost-effectiveness is sensitive to the seroprevalence and adherence to vaccinations of the migrant. We conclude that scarce but direct EU/EEA data suggest social mobilization, vaccine programs, and education campaigns are promising strategies for migrants, but more research is needed. Research should also study cost effectiveness of strategies. Vaccination of migrants should continue to be a public heath priority in EU/EEA

    Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway

    Get PDF
    PurposeDeoxycytidine kinase (dCK) is a rate-limiting enzyme in deoxyribonucleoside salvage, a metabolic pathway involved in the production and maintenance of a balanced pool of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis. dCK phosphorylates and therefore activates nucleoside analogs such as cytarabine, gemcitabine, decitabine, cladribine, and clofarabine that are used routinely in cancer therapy. Imaging probes that target dCK might allow stratifying patients into likely responders and nonresponders with dCK-dependent prodrugs. Here we present the biodistribution and radiation dosimetry of three fluorinated dCK substrates, (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC, developed for positron emission tomography (PET) imaging of dCK activity in vivo.MethodsPET studies were performed in nine healthy human volunteers, three for each probe. After a transmission scan, the radiopharmaceutical was injected intravenously and three sequential emission scans acquired from the base of the skull to mid-thigh. Regions of interest encompassing visible organs were drawn on the first PET scan and copied to the subsequent scans. Activity in target organs was determined and absorbed dose estimated with OLINDA/EXM. The standardized uptake value was calculated for various organs at different times.ResultsRenal excretion was common to all three probes. Bone marrow had higher uptake for L: -(18)F-FAC and L: -(18)F-FMAC than (18)F-FAC. Prominent liver uptake was seen in L: -(18)F-FMAC and L: -(18)F-FAC, whereas splenic activity was highest for (18)F-FAC. Muscle uptake was also highest for (18)F-FAC. The critical organ was the bladder wall for all three probes. The effective dose was 0.00524, 0.00755, and 0.00910 mSv/MBq for (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC, respectively.ConclusionThe biodistribution of (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC in humans reveals similarities and differences. Differences may be explained by different probe affinities for nucleoside transporters, dCK, and catabolic enzymes such as cytidine deaminase (CDA). Dosimetry demonstrates that all three probes can be used safely to image the deoxyribonucleoside salvage pathway in humans

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    The Procedural Index for Mortality Risk (PIMR): an index calculated using administrative data to quantify the independent influence of procedures on risk of hospital death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surgeries and other procedures can influence the risk of death in hospital. All published scales that predict post-operative death risk require clinical data and cannot be measured using administrative data alone. This study derived and internally validated an index that can be calculated using administrative data to quantify the independent risk of hospital death after a procedure.</p> <p>Methods</p> <p>For all patients admitted to a single academic centre between 2004 and 2009, we estimated the risk of all-cause death using the Kaiser Permanente Inpatient Risk Adjustment Methodology (KP-IRAM). We determined whether each patient underwent one of 503 commonly performed therapeutic procedures using Canadian Classification of Interventions codes and whether each procedure was emergent or elective. Multivariate logistic regression modeling was used to measure the association of each procedure-urgency combination with death in hospital independent of the KP-IRAM risk of death. The final model was modified into a scoring system to quantify the independent influence each procedure had on the risk of death in hospital.</p> <p>Results</p> <p>275 460 hospitalizations were included (137,730 derivation, 137,730 validation). In the derivation group, the median expected risk of death was 0.1% (IQR 0.01%-1.4%) with 4013 (2.9%) dying during the hospitalization. 56 distinct procedure-urgency combinations entered our final model resulting in a Procedural Index for Mortality Rating (PIMR) score values ranging from -7 to +11. In the validation group, the PIMR score significantly predicted the risk of death by itself (c-statistic 67.3%, 95% CI 66.6-68.0%) and when added to the KP-IRAM model (c-index improved significantly from 0.929 to 0.938).</p> <p>Conclusions</p> <p>We derived and internally validated an index that uses administrative data to quantify the independent association of a broad range of therapeutic procedures with risk of death in hospital. This scale will improve risk adjustment when administrative data are used for analyses.</p

    Label-free integrative pharmacology on-target of drugs at the β2-adrenergic receptor

    Get PDF
    We describe a label-free integrative pharmacology on-target (iPOT) method to assess the pharmacology of drugs at the β2-adrenergic receptor. This method combines dynamic mass redistribution (DMR) assays using an array of probe molecule-hijacked cells with similarity analysis. The whole cell DMR assays track cell system-based, ligand-directed, and kinetics-dependent biased activities of the drugs, and translates their on-target pharmacology into numerical descriptors which are subject to similarity analysis. We demonstrate that the approach establishes an effective link between the label-free pharmacology and in vivo therapeutic indications of drugs

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201
    corecore