62 research outputs found

    Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review

    Get PDF
    This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    The Physics of the B Factories

    Get PDF

    Scalable Linear Solvers for Computational Material Design of Filled Rubbers

    No full text
    Material design of enhanced tire using nano-fillers requires multi-objective design optimization and data mining, where the Multi-Objective Design Exploration (MODE) method [Koishi et al. 2014] is introduced to enrich the design knowledge for decision making throughout the product design process. One very important procedure of MODE is to predict the mechanical properties of rubbers using nonlinear implicit analysis which involves multiple numerical issues including large model size (tens of millions d.o.f.), periodic constraints, large material deformation and material nonlinearity. To overcome these challenges, we utilize a convex generalized meshfree approximation (GMF) [Wu et al. 2009] for large material deformation analysis. This ensures the positive approximation in the discrete system and is less sensitive to the meshfree nodal support size and integration order effects. Moreover, we use a nearly-incompressible hyperelastic material model with linear viscoelasticity for the rubber matrix and interfacial bound material in nonlinear analysis. Thus, the GMF method is coupled with the pressure smoothing scheme [Hu et al. 2010] to relieve numerical volumetric locking at the incompressible limit of the rubber material. The large-scale discrete system is solved in implicit analysis with a cyclic loading path, where the numerical solution of the resulting very ill-conditioned linear systems of equations needs most of the computational time in the whole simulation. Classical direct solvers are in general too expensive for the required model size due to their nonlinear memory demands and operation counts. Thus, we apply an iterative SAMG solver [SAMG] to overcome these limitations. SAMG is a highly robust and efficient solver that typically shows optimal linear scaling with respect to memory and operations. We present numerical results to demonstrate the effectiveness of the computational framework proposed in this work. They clearly show that with the help of SAMG the numerical treatment of this extremely challenging application becomes feasible

    The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity.

    No full text
    Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia
    corecore