740 research outputs found

    Why are Fluid Densities So Low in Carbon Nanotubes?

    Get PDF
    The equilibrium density of fluids under nanoconfinement can differ substantially from their bulk density. Using a mean-field approach to describe the energetic landscape near the carbon nanotube (CNT) wall, we obtain analytical results describing the lengthscales associated with the layering observed at the fluid-CNT interface. When combined with molecular simulation results for the fluid density in the layered region, this approach allows us to derive a closed-form prediction for the overall equilibrium fluid density as a function of the CNT radius that is in excellent agreement with molecular dynamics simulations. We also show how aspects of this theory can be extended to describe water confined within CNTs and find good agreement with results from the literature

    A Universal Molecular-Kinetic Scaling Relation for Slip of a Simple Fluid at a Solid Boundary

    Full text link
    Using the observation that slip in simple fluids at low and moderate shear rates is a thermally activated process driven by the shear stress in the fluid close to the solid boundary, we develop a molecular-kinetic model for simple fluid slip at solid boundaries. The proposed model, which is in the form of a universal scaling relation that connects slip and shear rate, reduces to the well known Navier-slip condition under low shear conditions, providing a direct connection between molecular parameters and the slip length. Molecular-dynamics simulations are in very good agreement with the predicted dependence of slip on system parameters, including the temperature and fluid-solid interaction strength. Connections between our model and previous work, as well as simulation and experimental results are explored and discussed

    Statistical Error in Particle Simulations of Hydrodynamic Phenomena

    Full text link
    We present predictions for the statistical error due to finite sampling in the presence of thermal fluctuations in molecular simulation algorithms. Specifically, we establish how these errors depend on Mach number, Knudsen number, number of particles, etc. Expressions for the common hydrodynamic variables of interest such as flow velocity, temperature, density, pressure, shear stress and heat flux are derived using equilibrium statistical mechanics. Both volume-averaged and surface-averaged quantities are considered. Comparisons between theory and computations using direct simulation Monte Carlo for dilute gases, and molecular dynamics for dense fluids, show that the use of equilibrium theory provides accurate results.Comment: 24 pages postscript (including 16 figures

    Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows

    Get PDF
    A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar-Gross-Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses a single distribution function and features an adjustable Prandtl number. Numerical simulations show that using a moderate discrete velocity set, this model can accurately recover steady and transient solutions of the ES-BGK equation in the slip-flow and early transition regimes in the small Mach number limit that is typical of microscale problems of practical interest. In the transition regime in particular, comparisons with numerical solutions of the ES-BGK model, direct Monte Carlo and low-variance deviational Monte Carlo simulations show good accuracy for values of the Knudsen number up to approximately 0:5. On the other hand, highly non-equilibrium phenomena characterized by high Mach numbers, such as viscous heating and force-driven Poiseuille flow for large values of the driving force, are more difficult to capture quantitatively in the transition regime using discretizations that have been chosen with computational efficiency in mind such as the one used here, although improved accuracy is observed as the number of discrete velocities is increased

    Gas-flow animation by unsteady heating in a microchannel

    Get PDF
    We study the flow-field generated in a one-dimensional wall-bounded gas layer due to an arbitrary small-amplitude time variation in the temperature of its boundaries. Using the Fourier transform technique, analytical results are obtained for the slip-flow/Navier–Stokes limit. These results are complemented by low-variance simulations of the Boltzmann equation, which are useful for establishing the limits of the slip-flow description, as well as for bridging the gap between the slip-flow analysis and previously developed free-molecular analytical predictions. Results are presented for both periodic (sinusoidal) and nonperiodic (step-jump) heating profiles. Our slip-flow solution is used to elucidate a singular limit reported in the literature for oscillatory heating of a dynamically incompressible fluid

    An alternative approach to efficient simulation of micro/nanoscale phonon transport

    Full text link
    Starting from the recently proposed energy-based deviational formulation for solving the Boltzmann equation [J.-P. Peraud and N. G. Hadjiconstantinou, Phys. Rev. B 84, 2011], which provides significant computational speedup compared to standard Monte Carlo methods for small deviations from equilibrium, we show that additional computational benefits are possible in the limit that the governing equation can be linearized. The proposed method exploits the observation that under linearized conditions (small temperature differences) the trajectories of individual deviational particles can be decoupled and thus simulated independently; this leads to a particularly simple and efficient algorithm for simulating steady and transient problems in arbitrary three-dimensional geometries, without introducing any additional approximation.Comment: 4 pages, 2 figure
    • …
    corecore