488 research outputs found

    Floating two force component measuring device Patent

    Get PDF
    Device for measuring two orthogonal components of force with gallium flotation of measuring target for use in vacuum environment

    Improved molecular sorbent trap for high-vacuum systems

    Get PDF
    Closed cycle refrigeration loop in which trays holding molecular sorbent are made to serve as cooling baffles improves the performance of high vacuum systems. High performance is obtained with almost no decrease in pumping speed

    Two force component measuring device Patent

    Get PDF
    Development of two force component measuring devic

    A New Paradigm in Split Manufacturing: Lock the FEOL, Unlock at the BEOL

    Full text link
    Split manufacturing was introduced as an effective countermeasure against hardware-level threats such as IP piracy, overbuilding, and insertion of hardware Trojans. Nevertheless, the security promise of split manufacturing has been challenged by various attacks, which exploit the well-known working principles of physical design tools to infer the missing BEOL interconnects. In this work, we advocate a new paradigm to enhance the security for split manufacturing. Based on Kerckhoff's principle, we protect the FEOL layout in a formal and secure manner, by embedding keys. These keys are purposefully implemented and routed through the BEOL in such a way that they become indecipherable to the state-of-the-art FEOL-centric attacks. We provide our secure physical design flow to the community. We also define the security of split manufacturing formally and provide the associated proofs. At the same time, our technique is competitive with current schemes in terms of layout overhead, especially for practical, large-scale designs (ITC'99 benchmarks).Comment: DATE 2019 (https://www.date-conference.com/conference/session/4.5

    Holy

    Get PDF
    page 1

    A compact atomic magnetometer for cubesats

    Get PDF
    By shining a precisely tuned laser through an atomic vapor, we can determine local mag- netic field strength in scalar form and in a way that is not affected by temperature changes. This technology has been used in space many times before on missions flown by NASA and ESA, such as SWARM, Øersted, and CHAMP to calibrate accompanying vector mag- netometers which are subject to offsets caused by temperature changes. The device we constructed is a small, low-cost application of this scientific principle and opens up new areas of scientific possibility for cubesats and the ability to define geomagnetic field struc- tures on a small (<10km) scale as part of the ANDESITE cubesat mission being developed at Boston University. Previously, magnetic sensors in orbit have been flown individually on a single spacecraft or in very small groups such as the International Sun-Earth Exporers (ISEE) and SWARM which each used three separate spacecraft. This method of analyzing the geomagnetic field cannot provide a spatial or time resolution smaller than that of the separation between magnetic field readings. This project has focused on producing a tabletop demonstra- tion of a compact sensor head which could enable measurements on unprecedented small scales. Toward this end we have accomplished the construction and preliminary testing of a compact sensor head which contains all necessary elements to function as a scalar atomic magnetometer

    Úvaha týkající se přestupu tepla z horninového masívu do důlního ovzduší a použití chladicích zařízení k využití tohoto tepla

    Get PDF
    corecore