225 research outputs found

    Failure analysis of a steel motorcycle kickstand

    Get PDF
    Copyright @ 2009 Springer US.A fractured steel motorcycle kickstand was metallurgically investigated using a range of failure analysis tools [visual examination, energy dispersive X-ray (EDX) analysis, electron microprobe analysis (EPMA), scanning electron microscopy (SEM), fractography, optical microscopy, hardness testing and non-destructive testing (NDT)]. The steel kickstand’s composition, its microstructure, electron fractographs, and mechanical test results have been critically interpreted. Some evidence of wear damage, in the failed kickstand, was observed. The microstructural and fractographic analyses showed pre-existing micro-cracks which were believed to have grown to result in ductile failure followed by acceleration of corrosion. Recommendations have been made to avoid the failure of the motorcycle kickstand

    Augmenting recombinant antibody production in HEK293E cells: Optimizing transfection and culture parameters

    Get PDF
    Background: Optimizing recombinant antibody production is important for cost-effective therapeutics and diagnostics. With impact on commercialization, higher productivity beyond laboratory scales is highly sought, where efficient production can also accelerate antibody characterizations and investigations. Methods: Investigating HEK293E cells for mammalian antibody production, various transfection and culture parameters were systematically analyzed for antibody light chain production before evaluating them for whole antibody production. Transfection parameters investigated include seeding cell density, the concentration of the transfection reagent and DNA, complexation time, temperature, and volume, as well as culture parameters such as medium replacement, serum deprivation, use of cell maintenance antibiotic, incubation temperature, medium volume, post-transfection harvest day, and common nutrient supplements. Results: Using 2 mL adherent HEK293E cell culture transfections with 25 kDa linear polyethylenimine in the most optimized parameters, we demonstrated a ~2-fold production increase for light chain alone and for whole antibody production reaching 536 and 49 μg, respectively, in a cost-effective manner. With the addition of peptone, κ light chain increased by ~4-fold to 1032 μg, whereas whole antibody increased to a lesser extent by ~2.5-fold to 51 μg, with benefits potentially for antibodies limited by their light chains in production. Conclusions: Our optimized findings show promise for a more efficient and convenient antibody production method through transfection and culture optimizations that can be incorporated to scale-up processes and with potential transferability to other mammalian-based recombinant protein production using HEK293E

    The Influence of Molecular Adsorption on Elongating Gold Nanowires

    Full text link
    Using molecular dynamics simulations, we study the impact of physisorbing adsorbates on the structural and mechanical evolution of gold nanowires (AuNWs) undergoing elongation. We used various adsorbate models in our simulations, with each model giving rise to a different surface coverage and mobility of the adsorbed phase. We find that the local structure and mobility of the adsorbed phase remains relatively uniform across all segments of an elongating AuNW, except for the thinning region of the wire where the high mobility of Au atoms disrupts the monolayer structure, giving rise to higher solvent mobility. We analyzed the AuNW trajectories by measuring the ductile elongation of the wires and detecting the presence of characteristic structural motifs that appeared during elongation. Our findings indicate that adsorbates facilitate the formation of high-energy structural motifs and lead to significantly higher ductile elongations. In particular, our simulations result in a large number of monatomic chains and helical structures possessing mechanical stability in excess of what we observe in vacuum. Conversely, we find that a molecular species that interacts weakly (i.e., does not adsorb) with AuNWs worsens the mechanical stability of monatomic chains.Comment: To appear in Journal of Physical Chemistry

    Nonmonotone Barzilai-Borwein Gradient Algorithm for 1\ell_1-Regularized Nonsmooth Minimization in Compressive Sensing

    Full text link
    This paper is devoted to minimizing the sum of a smooth function and a nonsmooth 1\ell_1-regularized term. This problem as a special cases includes the 1\ell_1-regularized convex minimization problem in signal processing, compressive sensing, machine learning, data mining, etc. However, the non-differentiability of the 1\ell_1-norm causes more challenging especially in large problems encountered in many practical applications. This paper proposes, analyzes, and tests a Barzilai-Borwein gradient algorithm. At each iteration, the generated search direction enjoys descent property and can be easily derived by minimizing a local approximal quadratic model and simultaneously taking the favorable structure of the 1\ell_1-norm. Moreover, a nonmonotone line search technique is incorporated to find a suitable stepsize along this direction. The algorithm is easily performed, where the values of the objective function and the gradient of the smooth term are required at per-iteration. Under some conditions, the proposed algorithm is shown to be globally convergent. The limited experiments by using some nonconvex unconstrained problems from CUTEr library with additive 1\ell_1-regularization illustrate that the proposed algorithm performs quite well. Extensive experiments for 1\ell_1-regularized least squares problems in compressive sensing verify that our algorithm compares favorably with several state-of-the-art algorithms which are specifically designed in recent years.Comment: 20 page

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets

    UEV-1 Is an Ubiquitin-Conjugating Enzyme Variant That Regulates Glutamate Receptor Trafficking in C. elegans Neurons

    Get PDF
    The regulation of AMPA-type glutamate receptor (AMPAR) membrane trafficking is a key mechanism by which neurons regulate synaptic strength and plasticity. AMPAR trafficking is modulated through a combination of receptor phosphorylation, ubiquitination, endocytosis, and recycling, yet the factors that mediate these processes are just beginning to be uncovered. Here we identify the ubiquitin-conjugating enzyme variant UEV-1 as a regulator of AMPAR trafficking in vivo. We identified mutations in uev-1 in a genetic screen for mutants with altered trafficking of the AMPAR subunit GLR-1 in C. elegans interneurons. Loss of uev-1 activity results in the accumulation of GLR-1 in elongated accretions in neuron cell bodies and along the ventral cord neurites. Mutants also have a corresponding behavioral defect—a decrease in spontaneous reversals in locomotion—consistent with diminished GLR-1 function. The localization of other synaptic proteins in uev-1-mutant interneurons appears normal, indicating that the GLR-1 trafficking defects are not due to gross deficiencies in synapse formation or overall protein trafficking. We provide evidence that GLR-1 accumulates at RAB-10-containing endosomes in uev-1 mutants, and that receptors arrive at these endosomes independent of clathrin-mediated endocytosis. UEV-1 homologs in other species bind to the ubiquitin-conjugating enzyme Ubc13 to create K63-linked polyubiquitin chains on substrate proteins. We find that whereas UEV-1 can interact with C. elegans UBC-13, global levels of K63-linked ubiquitination throughout nematodes appear to be unaffected in uev-1 mutants, even though UEV-1 is broadly expressed in most tissues. Nevertheless, ubc-13 mutants are similar in phenotype to uev-1 mutants, suggesting that the two proteins do work together to regulate GLR-1 trafficking. Our results suggest that UEV-1 could regulate a small subset of K63-linked ubiquitination events in nematodes, at least one of which is critical in regulating GLR-1 trafficking
    corecore