178 research outputs found

    An ecological characterization of Salt River Bay National Historical Park and Ecological Preserve, U.S. Virgin Islands

    Get PDF
    Salt River Bay National Historical Park and Ecological Preserve (hereafter, SARI or the park) was created in 1992 to preserve, protect, and interpret nationally significant natural, historical, and cultural resources (United States Congress 1992). The diverse ecosystem within it includes a large mangrove forest, a submarine canyon, coral reefs, seagrass beds, coastal forests, and many other natural and developed landscape elements. These ecosystem components are, in turn, utilized by a great diversity of flora and fauna. A comprehensive spatial inventory of these ecosystems is required for successful management. To meet this need, the National Oceanic and Atmospheric Administration (NOAA) Biogeography Program, in consultation with the National Park Service (NPS) and the Government of the Virgin Islands Department of Planning and Natural Resources (VIDPNR), conducted an ecological characterization. The characterization consists of three complementary components: a text report, digital habitat maps, and a collection of historical aerial photographs. This ecological characterization provides managers with a suite of tools that, when coupled with the excellent pre-existing body of work on SARI resources, enables improved research and monitoring activities within the park (see Appendix F for a list of data products)

    Self-starting cumulative sum harvest control rule (SS-CUSUM-HCR) for status-quo management of data-limited fisheries

    Get PDF
    We demonstrate a harvest control rule based on the self-starting cumulative sum (SS-CUSUM) control chart that can maintain a fish stock at its starting (status-quo) level. The SS-CUSUM is an indicator monitoring tool commonly used in quality control engineering and does not require a long time series or predefined reference point for detecting temporal trends. The reference points in SS-CUSUM are calibrated in the form of running means that are updated on an ongoing basis when new observations become available. The SS-CUSUM can be initiated with as few as two observations in the time series and can be applied long before many other methods, soon after initial data become available. A wide range of stock indicators can be monitored, but in this study, we demonstrate the method using an equally weighted sum of two indicators: a recruitment indicator and a large fish indicator from a simulated fishery. We assume that no life history data are available other than 2 years of both indicator data and current harvest levels when the SS-CUSUM initiates. The signals generated from SS-CUSUM trigger a harvest control rule (SS-CUSUM-HCR), where the shift that occurs in the indicator time series is computed and is used as an adjustment factor for updating the total allowable catch. Our study shows that the SS-CUSUM-HCR can maintain the fish stock at its starting status-quo level (even for overfished initial states) but has limited scope if the fishery is already in an undesirable state such as a stock collapse. We discuss how the SS-CUSUM approach could be adapted to move beyond a status-quo management strategy, if additional information on the desirable state of the fishery is available. </jats:p

    The importance of maternal insulin resistance throughout pregnancy on neonatal adiposity

    Get PDF
    Background: Although previous studies evaluated the association of maternal health parameters with neonatal adiposity, little is known regarding the complexity of the relationships among different maternal health parameters throughout pregnancy and its impact on neonatal adiposity. Objectives: To evaluate the direct and indirect associations between maternal insulin resistance during pregnancy, in women with obesity, and neonatal adiposity. In addition, associations between maternal fasting glucose, triglycerides (TG), non-esterified fatty acids (NEFA), and neonatal adiposity were also assessed. Methods: This is a longitudinal, secondary analysis of the DALI study, an international project conducted in nine European countries with pregnant women with obesity. Maternal insulin resistance (HOMA-IR), fasting glucose, TG, and NEFA were measured three times during pregnancy (<20, 24-28, and 35-37 weeks of gestation). Offspring neonatal adiposity was estimated by the sum of four skinfolds. Structural equation modelling was conducted to evaluate the direct and indirect relationships among the variables of interest. Results: Data on 657 mother-infant pairs (50.7% boys) were analysed. Neonatal boys exhibited lower m

    Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein

    Full text link
    The Enterococcus faecalis conjugative plasmids pAD1 and pAM373 encode a mating response to the peptide sex pheromones cAD1 and cAM373 respectively. Sequence determination of both plasmids has recently been completed with strong similarity evident over many of the structural genes related to conjugation. pAD1 has two origins of transfer, with oriT1 being located within the repA determinant, whereas the more efficiently utilized oriT2 is located between orf53 and orf57 , two genes found in the present study to be essential for conjugation. We have found a similarly located oriT to be present in pAM373. oriT2 corresponds to about 285 bp based on its ability to facilitate mobilization by pAD1 when ligated to the shuttle vector pAM401; however, it was not mobilized by pAM373. In contrast, a similarly ligated fragment containing the oriT of pAM373 did not facilitate mobilization by pAD1 but was efficiently mobilized by pAM373. The oriT sites of the two plasmids each contained a homologous large inverted repeat (spanning about 140 bp) adjacent to a series of non-homologous short (6 bp) direct repeats. A hybrid construction containing the inverted repeat of pAM373 and direct repeats of pAD1 was mobilized efficiently by pAD1 but not by pAM373, indicating a significantly greater degree of specificity is associated with the direct repeats. Mutational (deletion) analyses of the pAD1 oriT2 inverted repeat structure suggested its importance in facilitating transfer or perhaps ligation of the ends of the newly transferred DNA strand. Analyses showed that Orf57 (to be called TraX) is the relaxase, which was found to induce a specific nick in the large inverted repeat inside oriT ; the protein also facilitated site-specific recombination between two oriT2 sites. Orf53 (to be called TraW) exhibits certain structural similarities to TraG-like proteins, although there is little overall homology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72536/1/j.1365-2958.2002.03007.x.pd

    ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle

    Get PDF
    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma a

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation

    Establishing reference samples for detection of somatic mutations and germline variants with NGS technologies

    Get PDF
    We characterized two reference samples for NGS technologies: a human triple-negative breast cancer cell line and a matched normal cell line. Leveraging several whole-genome sequencing (WGS) platforms, multiple sequencing replicates, and orthogonal mutation detection bioinformatics pipelines, we minimized the potential biases from sequencing technologies, assays, and informatics. Thus, our “truth sets” were defined using evidence from 21 repeats of WGS runs with coverages ranging from 50X to 100X (a total of 140 billion reads). These “truth sets” present many relevant variants/mutations including 193 COSMIC mutations and 9,016 germline variants from the ClinVar database, nonsense mutations in BRCA1/2 and missense mutations in TP53 and FGFR1. Independent validation in three orthogonal experiments demonstrated a successful stress test of the truth set. We expect these reference materials and “truth sets” to facilitate assay development, qualification, validation, and proficiency testing. In addition, our methods can be extended to establish new fully characterized reference samples for the community

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980�2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14�294 geography�year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95 uncertainty interval 61·4�61·9) in 1980 to 71·8 years (71·5�72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7�17·4), to 62·6 years (56·5�70·2). Total deaths increased by 4·1 (2·6�5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0 (15·8�18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1 (12·6�16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1 (11·9�14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1, 39·1�44·6), malaria (43·1, 34·7�51·8), neonatal preterm birth complications (29·8, 24·8�34·9), and maternal disorders (29·1, 19·3�37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146�000 deaths, 118�000�183�000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393�000 deaths, 228�000�532�000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost YLLs) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion
    corecore