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Abstract: We demonstrate a harvest control rule based on the self-starting cumulative sum 9 

(SS-CUSUM) control chart that can be used to manage a fish stock with no historical data. 10 

The SS-CUSUM is an indicator monitoring tool and does not require long historical time 11 

series data or pre-defined reference points for detecting trends. The reference points in SS-12 

CUSUM are calibrated in the form of ‘running means’ that are updated regularly when new 13 

observations become available. In this study, we simulated a data limited fishery and 14 

assumed that no historical data or life history parameters are available for the fish stock. The 15 

SS-CUSUM monitoring was initiated by measuring a combined index of recruitment and 16 

large fish indicator from the simulated fishery. The signals generated from SS-CUSUM 17 

triggered a harvest control rule (SS-CUSUM-HCR), where the shift that occurred in the 18 

indicator time series was estimated and used as an adjustment factor for updating the Total 19 

Allowable Catch (TAC). Our study showed that the SS-CUSUM-HCR can sustain the status-20 

quo state of the fish stock but has limited scope if the stock is already in an undesirable 21 

state. However the approach via SS-CUSUM is adaptable to move beyond a status-quo 22 

management strategy, if some information on the desirable state of fisheries is available.   23 
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Introduction 24 

For a wide range of fish stocks, the available data are inadequate for estimating reference 25 

points and assessing their relative stock status (Pilling et al. 2009). Such data limited 26 

situations can arise if the species concerned are not directly targeted by the fishery (by-27 

catch), are prone to misidentification or if they lack catch and life history data (Reuter et al. 28 

2010). If the federal or state agencies have insufficient financial or human resources to 29 

conduct appropriate fisheries monitoring, or if the number of different fish stocks is large, 30 

then these can also lead to data limited situations (Prince 2005). Hence there are growing 31 

concerns about improving existing methods and developing alternative ways for providing 32 

management advice for data limited fisheries (Kelly and Codling 2006; Punt et al. 2011; 33 

Pazhayamadom et al. 2013). When formal fish stock assessments cannot be completed, 34 

expert judgement can be made based on the trend of empirical stock indicators (Koeller et 35 

al. 2000). However, many existing methods require reference points and/or data from a 36 

reasonable number of years to detect these trends (Blanchard et al. 2010). Moreover, there 37 

is a lack of methods that give clear strategic direction as to how decision making should 38 

adapt and respond to indicators (Bentley and Stokes 2009).  39 

The relationship between empirical indicators and the underlying abundance of the stock is 40 

not direct and can be affected by perturbations that may account for both transient and 41 

persistent effects (Scandol 2003; Dulvy et al. 2004; Scandol 2005). Methods from Statistical 42 

Process Control (SPC) theory such as the Decision Interval Cumulative Sum (DI-CUSUM) 43 

control charts are useful for classifying these effects and hold the basic principles of a ‘traffic 44 

light’ approach (Page 1954). The DI-CUSUM is a trend detection algorithm and raises an 45 

‘out-of-control’ signal when a significant deviation occurs in the indicator time series (‘in-46 

control’ if no deviation occurs). Pazhayamadom et al. (in press) constructed a harvest control 47 

rule (DI-CUSUM-HCR) based on DI-CUSUM and demonstrated that fisheries can be 48 

managed using the trend in empirical indicators. However, DI-CUSUM requires a control 49 
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mean (or reference point) for computing the indicator deviations and hence they cannot be 50 

applied in situations when such information is not available (Pazhayamadom et al. in press).  51 

In this study, we present the application of Self-Starting Cumulative Sum (SS-CUSUM), a 52 

variant of the DI-CUSUM where pre-determined reference points are not required for 53 

constructing the control chart (Hawkins 1987). In SS-CUSUM, a ‘running mean’ is generated 54 

(in place of a control mean) from regular indicator observations and is updated on an 55 

ongoing basis when new data becomes available (Hawkins and Olwell 1998; 56 

Pazhayamadom et al. 2013). Therefore SS-CUSUM can be initiated even when there are no 57 

historical data and if indicator observations can be made available in future (Hawkins and 58 

Olwell 1998). Inherently, the SS-CUSUM computation adapt its running mean to ‘status-quo’ 59 

conditions when the monitoring initiate but may shift eventually if a management response is 60 

not invoked at ‘out-of-control’ situations when they are signalled.  61 

In Pazhayamadom et al. (2013), we showed that the SS-CUSUM is useful for detecting the 62 

impacts of fishing on stock biomass. In this study, we extend the application of SS-CUSUM 63 

to directly manage a data limited fishery using a harvest control rule i.e., SS-CUSUM-HCR. 64 

We assume that no biological information or life histories are available for the fish stock but 65 

only a few indicator observations so the SS-CUSUM monitoring can be initiated. We also 66 

assume that the fishery develops as the management moves on but no information on the 67 

Maximum Sustainable Yield (MSY) is available. Thus the objective of SS-CUSUM-HCR is to 68 

sustain the status-quo levels (biomass and catch) and implement a ‘stability management’ 69 

rather than ‘MSY management’. The performance of SS-CUSUM-HCR is evaluated under 70 

various biological and fishery scenarios. We discuss how the method can be applied in a 71 

data limited context, particularly when no historical data are available for the fish stock. 72 

Materials and methods 73 

Throughout this study, we assume that no biological information or pre-defined reference 74 

points are initially available for the fish stock (i.e. “no historical information”). The SS-75 
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CUSUM is used to monitor a combined index of 1) the recruitment (which we assume is 76 

from an independent survey or similar), and 2) the large fish indicator (proportion of fishes 77 

greater than a certain age/ length from the catch), an indicator that has been found useful 78 

for operating CUSUM based management frameworks (Pazhayamadom et al. in press). 79 

Though SS-CUSUM does not require any historical observations for initiating the monitoring 80 

process, the earliest it could raise an ‘out-of-control’ signal is from the third year onwards 81 

since at least two data points are required for computing the initial running standard 82 

deviation (see Appendix A1). So we configured the SS-CUSUM-HCR management to 83 

operate only when two observations were available in the indicator time series. When an 84 

out-of-control situation is raised, the SS-CUSUM-HCR computes an adjustment factor to 85 

update the Total Allowable Catch (TAC). 86 

The operating model for fisheries dynamics 87 

We use a stochastic operating model to simulate a non-spatial age structured fish population 88 

(Pazhayamadom et al. in press, Appendix B).  The fishery simulation consists of four distinct 89 

phases. In the first phase, the population is simulated to grow deterministically to reach an 90 

un-fished equilibrium stock biomass (BUF). In the second phase, a fixed initial fishing 91 

mortality ‘Fint’ is applied so that the stock stabilizes at a fishery equilibrium biomass of BEQ 92 

(Fint=F50%MSY in the base case produce BEQ=B50%MSY with 50% of MSY; see Table 1 and 93 

Appendix B). At this point, it is assumed that the fish stock is in an ‘in-control’ situation 94 

representing a fishery with sustainable levels of harvest. This ‘in-control’ value of Fint is an 95 

important assumption in this study since the SS-CUSUM may not generate meaningful 96 

alarms if the fishery starts off from an undesirable state (thus a limitation as well if the stocks 97 

are already being overfished). In the third phase, the model runs for 100 further years where 98 

random variability is introduced in the growth, stock-recruitment and Fint (Appendix B). In the 99 

fourth phase, the only initial data available were two observations in the indicator time series. 100 

The indicators are monitored using SS-CUSUM and the fishery is managed using SS-101 
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CUSUM-HCR for 20 further years. The biomass and catch from the fourth phase of the 102 

simulation is recorded for evaluating the performance of SS-CUSUM-HCR.  103 

The observation model and data collection 104 

Two types of stock indicators are measured in each year of the fisheries simulation. The first 105 

indicator is an empirical measure of recruitment (R) to the stock i.e., the number of zero age 106 

group individuals in the population (Appendix B).  However, we consider the recruitment as a 107 

measure of small fish abundance which could be measured from fishery independent 108 

surveys, landed catch or discards (Rochet et al. 2005; Wilderbuer et al. 2013; Fujino et al. 109 

2013). The recruitment indicator R was measured with an observation error using a 110 

coefficient of variation of 0.6 from the log-normal distribution. This is large enough to 111 

simulate the values observed in real world fish stocks (Sakuramoto and Suzuki 2012) though 112 

the effect of using relatively smaller or higher coefficients have been tested in later scenarios 113 

(see Appendix B). The second indicator we use is a large fish indicator (Wp) i.e., the 114 

proportion of large fish individuals by weight from the fisheries catch (Appendix B). Earlier 115 

studies have shown that similar indicators are useful for detecting the fishing impacts from 116 

single species to ecosystem level research (Shephard et al. 2011; Probst et al. 2013; 117 

Pazhayamadom et al. 2013). In the simulation, Wp is measured by taking a random sample 118 

of n=1000 individuals from the simulated fisheries catch (a smaller sample size is more 119 

realistic in data limited situations and their effects have been tested; see Appendix B). The 120 

large fish individuals are classified as those which belong to age groups that are 95% or 121 

more vulnerable to the fishing gear (≥S95%; Table 2).   122 

Monitoring the combined indicator using SS-CUSUM 123 

The SS-CUSUM monitoring consists of three steps that are executed in each year of the 124 

fishery simulation. First, all observations in the indicator time series are transformed to a 125 

random variable (   and    ) which involves updating the running parameters (running 126 

mean ‘     ’ and running standard deviation ‘     ’) by including the most recent indicator 127 
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observation and a standardization procedure to make them comparable to other indicators 128 

regardless of the unit of measurement (Appendix A1). In the second step, we construct a 129 

combined indicator (RWp) of both the recruitment and large fish indicator by summing the 130 

transformed time series observations (   +        ). A detailed example of this step is 131 

provided in Table A1. In the third step, the RWp observations are used to compute an ‘Upper 132 

SS-CUSUM’ (  , cumulative sum of        ) and ‘Lower SS-CUSUM’ (  , cumulative sum 133 

of        ) separately (Appendix A2). If the SS-CUSUMs cross beyond a threshold limit ‘h’ 134 

(      or      ), then the control chart indicates an ‘out-of-control’ situation but if the 135 

SS-CUSUMs (   and   ) are between    and - , then it indicates an ‘in-control’ situation.  136 

SS-CUSUM parameters 137 

In SS-CUSUM, the running parameters are updated on an ongoing basis but only if the 138 

scheme signals an in-control situation. Thus the ‘out-of-control’ observations are not used for 139 

updating the running mean. However, occasional outliers may occur in the indicator time 140 

series and this could potentially contaminate the running mean (Hawkins and Olwell 1998). 141 

Therefore ‘metric winsorization’ is employed to replace the extreme outliers using a cut off 142 

threshold value known as the “winsorizing constant” (w; see Appendix A3). A w=1 is used in 143 

this study so that the running mean may not depart more than one standard deviation from 144 

its previous state. In addition to this, a parameter known as the allowance factor (k) is used 145 

in SS-CUSUM to make the scheme robust to inherent variability of the indicator (Mesnil and 146 

Petitgas 2009). This is employed in the computation of upper and lower CUSUMs where k is 147 

subtracted from the absolute transformed observations (      ; eq. 15 in Appendix A2). In 148 

this study we use a high k=1.5 so that more in-control observations can be accommodated 149 

for the computation of running means (and the values may become closer to the status-quo). 150 

To detect out-of-control situations, a low h=0 is used in SS-CUSUM so that the probability of 151 

detecting true fishing impacts is high (Pazhayamadom et al. 2013). The effects of using 152 

different constants for w, k and h have been explored in Appendix B (see Table S1). 153 
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Adjustment factor for TAC 154 

In our proposed SS-CUSUM-HCR, an adjustment factor is used to update the TAC from the 155 

previous year. Pazhayamadom et al. (in press) demonstrated that if the shift in the indicator 156 

(that resulted in an out-of-control signal) can be estimated, this could serve as an adjustment 157 

factor for TAC so that the next indicator observation may become closer to the reference 158 

point (here ‘running mean’) with the smallest variation. The shift in the indicator can be 159 

estimated using several methods in Engineering Process Control (EPC) theory but, we 160 

adapted a modified form of Grubbs harmonic rule (Grubbs 1983) for the following reasons. 161 

Firstly, this method has been found to be efficient in reducing the risk of stock collapse in a 162 

DI-CUSUM based management framework (Pazhayamadom et al. in press). Secondly, this 163 

method can estimate the indicator shift more accurately when compared to other techniques 164 

in EPC (Pazhayamadom 2013).Thirdly, this method holds fewer assumptions and requires 165 

the least number of historical observations to estimate the indicator shift (Kelton et al. 1990; 166 

Luceño 1992; Wiklund 1995). The modified form of Grubbs harmonic rule computes the 167 

indicator shift by constructing a harmonic series using all out-of-control observations such 168 

that the      is divided by progressively smaller coefficients (see Table A1). According to 169 

Grubbs harmonic rule, the proportional indicator shift in ith year (   ) can be estimated using 170 

the formula: 171 
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The condition   
     or   

     indicates that the shift is estimated only if an out-of-control 173 

situation is signalled by the SS-CUSUM. The H-counter (  
 ) indicates the number of 174 

observations since         that led to the current out-of-control situation. 175 
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The SS-CUSUM-HCR 176 

The SS-CUSUM-HCR is a catch based management procedure and is initiated in the fourth 177 

phase of the operating model. We assume that the catch from the last year of the indicator 178 

time series is available and is fixed as the initial TAC when the SS-CUSUM-HCR initiates (a 179 

feasible approach that can be applied in data limited situations). The adjustment factor (   ) 180 

updates the TAC only if two conditions are satisfied. First, the SS-CUSUM should raise an 181 

alarm indicating the “out-of-control” situation (   
   >    ). Second, the absolute SS-CUSUM 182 

in the current year should be greater than the absolute SS-CUSUM in the previous year 183 

(   
   >     

  ; progressing further away from zero), indicating that an adjustment in TAC is 184 

required to bring the observations (in future) closer to the running mean. The second 185 

condition is necessary because if the absolute SS-CUSUM stagnates or decreases (after 186 

raising an alarm), then it implies that the stock is already in the path back to its initial ‘in-187 

control’ state and no further TAC adjustments are required to sustain the status-quo levels.  188 

If SS-CUSUM indicates an in-control situation (   
   <    ), then the HCR was designed to 189 

sustain TAC from the previous year. However, if SS-CUSUM is moving towards zero (   
   190 

<     
   at in-control situations), then the TAC is increased by a multiplier (      ) to simulate 191 

a developing fishery i.e., more catch is allowed as long as the SS-CUSUM indicates that the 192 

stock continues to remain in an ‘in-control’ state. This can be mathematically expressed as; 193 

(2) If    
   >      and    

   >     
  ,                             194 

(3) If    
   >      and    

   <     
  ,               195 

(4) If    
   <      and    

   >     
  ,               196 

(5) If    
   <      and    

   <     
  ,                                197 

A low TAC increment (       =1% in the base case, eq. 5) is preferred to reduce the risk of 198 

overfishing if the fishery start off from an undesirable state (but we also explored the effect of 199 

using higher       ; see Appendix B). Also note that a low increment such as 1% becomes 200 
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higher in absolute magnitude as the TAC moves closer to the MSY. We also apply an annual 201 

TAC restriction (    =10% in the base case; see Appendix B for the effect of using 202 

higher     ) such that the        neither drops below               nor goes 203 

above              .  This is essential to avoid a stock collapse or fishery closure 204 

because the magnitude of adjustment factor (   ) will be high if a large SS-CUSUM signal 205 

appears in the control chart (e.g. in the event of a recruitment failure). Since there is no 206 

information on MSY of the stock, a catch higher than MSY is likely to be unsustainable. 207 

Therefore an additional response level is required where multiples of historical high catch 208 

(Dowling et al. 2008; Smith et al. 2009) may be used to minimize the        exceeding 209 

MSY. In this study, we used TAClim (1% in the base case) so the TAC was not allowed to 210 

increase more than a multiple of the historical TAC maximum (TACmax) i.e.,        211 

          . The effect of using higher TAClim have been explored and discussed in 212 

Appendix B. A perfect TAC implementation is also not likely possible in the real world so, the 213 

fisheries catch (  ) is computed by adding random noise errors to the       using a 214 

coefficient of variation (cv) of 0.1 from the normal distribution. 215 

(6)                                       216 

The fishery simulations, indicator monitoring and SS-CUSUM-HCR computations were 217 

carried out using the programming language R (R Core Team 2014). 218 

Scenarios considered 219 

We consider four main scenarios to compare the performances of the SS-CUSUM-HCR 220 

(Table 1). These are based on (i) the number of historical observations available when the 221 

SS-CUSUM initiates (2, 4, 6 or 8 data points in the indicator time series); (ii) the state of 222 

stock when the management initiates (below FMSY, at FMSY or above FMSY); (iii) the life span 223 

of the species (LH1, LH2 or LH3); and (iv) the selectivity of the fishing gear (trawl or gill net). 224 

We also considered other scenarios (see Appendix B) to test the effect of different (i) 225 
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winsorizing constants (w); (ii) allowance constants (k); (iii) control limits (h); (iv) inter annual 226 

TAC restrictions (    ); (v) coefficient of variation in the recruitment indicator (cv); (vi) 227 

sample size from the fisheries catch (n); (vii) TAC increments at in-control situations (      ) 228 

and (viii) restrictions on the maximum TAC allowed (      ). 229 

Base case: We compare all scenarios with a base case (see Table 1) where the total 230 

number of historical observations available are the shortest plausible (two data points so that 231 

SS-CUSUM monitoring can be initiated, Pazhayamadom et al. 2013); the initial state of stock 232 

represent a developing fishery below the FMSY i.e., at equilibrium levels of 50% MSY (to 233 

ensure that SS-CUSUM start off with the assumed “in-control” fishery where the status-quo 234 

catches are at sustainable levels given the inherent stock variations; Stefansson and 235 

Rosenberg 2005) and the model simulated a medium life span species (LH2; Table 2) with a 236 

fishery from medium mesh sized trawl net fishing gear (see Appendix B). Added to that, an 237 

observation error of cv=0.6 was used for the recruitment indicator and a sample size of 238 

n=1000 fish individuals were used for computing the large fish indicator. The SS-CUSUM 239 

parameters for the base case were w=1, k=1, h=0 and the SS-CUSUM-HCR parameters 240 

were          ,        =1% and        =1%. Each scenario was run for 1000 iterations 241 

and the biomass along with associated catch were recorded from the fourth phase of the 242 

simulation for evaluating the SS-CUSUM-HCR performance. 243 

Scenario 1: In the operating model, only two historical observations are available for the 244 

indicators in the fourth phase when the SS-CUSUM-HCR initiates. However, the SS-CUSUM 245 

is generally recommended to start with a few more observations from the ‘in-control’ state so 246 

the running means may represent the status-quo levels and stabilize at the intended 247 

reference point. Hence in the first scenario, the performance of SS-CUSUM-HCR is tested 248 

for the effect of having more historical ‘in-control’ observations (Table 1). 249 

Scenario 2: The SS-CUSUM-HCR should manage fisheries irrespective of the life history 250 

characteristics of the species because it is unlikely to have such information in a data limited 251 



11 
 

context. Hence in the second scenario, we test the HCR for fish stocks with three different 252 

life history traits i.e., short lived (LH1; a Herring-like; Family: Clupeidae), medium lived (LH2; 253 

Cod-like; Family: Gadidae) and long lived (LH3; Rockfish-like; Family: Sebastidae) species. 254 

The life history parameters used for these fish stocks are provided in Table 2.   255 

Scenario 3: We also consider situations where the stock is at different states when the 256 

management is initiated i.e., with relatively higher fishing pressure at or above FMSY (Table 257 

1). In these situations, we presume that the running mean may not stabilize at the intended 258 

reference point as the recruitment or large fish indicator will be relatively low at higher levels 259 

of fishing effort and the observations (including status-quo catch) may not represent a 260 

sustainable fishery given the inherent variation of stock dynamics. To test this assumption, 261 

we initiate the SS-CUSUM-HCR at Fint=0.227 (at FMSY) and Fint= 0.327(above FMSY). 262 

Scenario 4: Indicators from landed catch are sensitive to the differences in selectivity 263 

pattern of the fishing gear (Shin et al. 2005). Hence, we compare the performance of SS-264 

CUSUM-HCR across a trawl net (sigmoid shape selectivity for large, medium and small 265 

mesh sizes) and gill net (dome shape selectivity for medium mesh sizes) fishery. In trawl 266 

fisheries, we assume the fish become more vulnerable to fishing with increasing age 267 

(sigmoid shape selectivity) while in gill net, the vulnerability increases up to a certain age 268 

and then decreases (dome shape selectivity; see Appendix B).  269 

Performance measures 270 

The performance of SS-CUSUM-HCR is evaluated by computing the average ratio of stock 271 

biomass and total catch obtained in the fourth phase of the simulation (BHCR and CHCR) to 272 

their respective values at MSY i.e., the average BHCR / BMSY and CHCR / CMSY from all iterated 273 

simulations. Thus the outcomes can be compared to their MSY equivalents (a common 274 

reference point in fisheries; Froese et al. 2011) and mean status-quo levels i.e., values 275 

corresponding to the fishery equilibrium ‘BEQ’ from the second phase of the simulation (to 276 

determine whether the stock has been sustained at its initial state). These performance 277 
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measures are referred to as relative average biomass (RAB) and relative average catch 278 

(RAC) from here on. In certain cases, the stock collapsed and hence the performance 279 

measures (of biomass and catch) did not follow a normal distribution (Kolmogorov -Smirnov 280 

test using fBasics package of R; Wuertz 2013). Therefore, a non-parametric Kruskal-Wallis 281 

test is applied to find whether the performance measures within each scenario are 282 

significantly different from each other. If significant, a multiple comparison post hoc test was 283 

applied using the kruskalmc function from the pgirmess package of R (Giraudoux 2013). 284 

A comprehensive study by Froese et al. (2011) showed that fish stocks with biomass levels 285 

below 0.5 BMSY tend to impair recruitment and are unsustainable with a danger of collapse. 286 

Hence it is important to determine whether the SS-CUSUM-HCR management leads the 287 

stock to a state where the fishery is unsustainable. In our study, we consider the stock in a 288 

given year is at high risk if the biomass is less than 10% of the un-fished stock biomass 289 

equilibrium (<10%BUF).This threshold correspond to 0.22 – 0.39 BMSY of all the life history 290 

species used in this study with a biomass above 0.5 BMSY when the SS-CUSUM-HCR 291 

initiates (Table 1; Appendix B). The proportion of biomass <10% BUF (referred to as B10 from 292 

here on) is computed for each scenario from all iterated simulations of the fourth phase. 293 

Further, we employ the Pearson’s chi-squared test using the prop.test function in R (R Core 294 

Team 2014), to test whether the B10 are equal for all stocks within each scenario. If the 295 

proportions are found to be significantly different, then the pairwise.prop.test function from 296 

the stats package (R Core Team 2014) is used for multiple comparisons. 297 

Results 298 

Illustration of SS-CUSUM-HCR 299 

An example iteration of the SS-CUSUM-HCR management from the fourth phase of the 300 

fishery simulation is illustrated (Fig. 1). Figures 1a and 1b display the recruitment (R) and 301 

large fish indicator (Wp) from the observation model. In both cases, the running mean was 302 

stabilized very close to the intended reference point representing the mean status-quo state 303 
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of the fish stock (but they may also stabilize at an inappropriate level which we discuss later 304 

on). The combined indicator (RWp) shows the net deviation obtained after summing up the 305 

transformed indicator time series of R and Wp, their trends being well represented in Fig. 1c. 306 

The SS-CUSUM generated using RWp (Fig. 1d; Table A1) shows a total of seven negative 307 

signals (14, 16 and, 18-22 observations). It is obvious in Fig. 1e that negative TAC 308 

adjustments were applied at out-of-control situations (   
   >    ; h=0 in this case), whenever 309 

the absolute lower SS-CUSUM in a given year was higher compared to its previous year 310 

(observations at 14, 16 and 18-20th year). The TAC from the previous year was sustained 311 

(not updated) on the 21st and 22nd year because the SS-CUSUM is moving towards zero i.e., 312 

    
   <    

  <     
   (Fig. 1d; Table A1). The associated changes in fishing mortality and the 313 

recovery of stock biomass are presented in Fig. 1f.  314 

Output from the base case scenario 315 

The shaded region in Fig. 2a shows the 5th and 95th percentile of upper and lower SS-316 

CUSUMs obtained from all simulated iterations of the base case scenario. There are no 317 

signals during initial years because the earliest SS-CUSUM can raise an alarm is from the 318 

third year onwards (Fig. 2a) i.e., when the initial running parameters become available. 319 

Subsequently, the running means are updated but large departures from the existing mean 320 

is protected by the metric winsorization procedure. Figure 2a shows that alarms were raised 321 

by both the upper and lower SS-CUSUMs during the fourth phase of the simulation 322 

indicating that the algorithm was responding to changes in the status-quo state of the fish 323 

stock. Since the TAC was configured to increase by 1% at in-control situations, the fishing 324 

mortality becomes inflated occasionally (see Fig. 2b; the range of 5th-95th percentiles is 325 

large when compared to 25th- 75th percentiles) leading to out-of-control alarms from the 326 

lower SS-CUSUM (see the example in Fig. 1e and 1f). However, the median of fishing 327 

mortalities remained stable exactly at F=0.05 indicating that in most cases, the state of the 328 

stock was at in-control with mean status-quo levels (Fig. 2b). The range of stock biomass 329 

and total catch indicates that the SS-CUSUM-HCR sustained the fish stock with a stable 330 
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median close to its initial years (Figs. 2c and 2d), though slightly below the mean status-quo 331 

reference points.  Our study shows that choosing a low w=1 and high k=1.5 can adapt the 332 

running means moving closer to the mean status-quo reference points (Figs. 2e and 2f). 333 

Note that the mean status-quo levels marked in Figure 2 are values at fishery equilibrium 334 

conditions. The exact status-quo values are different in each iteration, given the inherent 335 

variation of stock dynamics and the observation or implementation errors applied.  336 

The SS-CUSUM-HCR may also lead the stock to high risk conditions (B10=0.008 in the base 337 

case scenario) if either one or both of the following situations occur. First, the signals from 338 

SS-CUSUM become meaningless if the running mean stabilizes far below or above the 339 

intended reference point, thus not representing the status-quo levels. Figure 3 shows an 340 

example situation where the fish stock ended up in a collapse. Here, the running mean of 341 

indicators was stabilized far below the mean status-quo levels (Figs. 3a and 3b) and raised 342 

disproportionate positive signals from the upper SS-CUSUM (Figs. 3c and 3d). This resulted 343 

in an increase in the TAC and F from the status-quo levels (Figs. 3e and 3f). It is unlikely 344 

that the running mean may stabilize exactly at the intended reference point but it is the 345 

extent to which the running parameters may depart from status-quo levels that determines 346 

the risk of the stock. However, this is a separate issue that require more research and is 347 

beyond the scope of the present study. Secondly, if the SS-CUSUM-HCR start-off with an 348 

initial TAC that is higher than the MSY (Fig. 3e), then the biomass cannot be sustained (Fig. 349 

3f). Note that the ‘in-control’ condition of SS-CUSUM-HCR inherently assumes that the 350 

status-quo biomass and catch are at sustainable levels. In the example, the drop in large 351 

fish indicator was detected by SS-CUSUM after a delay due to the running mean stabilizing 352 

at lower levels (Figs. 3b and 3d). This initiated a negative TAC adjustment in later years (yet 353 

above the MSY) but was not early enough to rebuild the fish stock.  354 

Performance comparison for stocks with more historical data 355 
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Results indicate that there is no significant difference in the performance measures (RAB 356 

(p=0.06); RAC (p=0.002); B10 (p=0.004)) if more historical data are available for the fish 357 

stock (Figs. 4a, 5a and 6a). Having more historical data means that the running means are 358 

expected to converge further towards the mean status-quo levels. However, no significant 359 

improvement was observed in the management performances. It is very obvious from Figs. 360 

1a, 1b, 3a and 3b that the running means are more dynamic during initial years (in particular 361 

the first three data points) and the subsequent updates become smaller as more 362 

observations are added to the indicator time series.  This essentially means that the quality 363 

of observations are more important than the length of the historical time series, because the 364 

first few observations largely determines whether the initial running mean and running 365 

standard deviation represents the status-quo state of the fish stock (see Discussion).  366 

Performance comparison with species having different life history traits 367 

All performance measures were significantly different for the three life history species 368 

(p<0.001). However, the values equivalent to BMSY is different for each species and hence 369 

the RAB performances are similar if they are compared to their respective mean status-quo 370 

levels (Fig. 4b). There are clear differences in the performance of RAC and B10, the short 371 

life span species having the lowest relative catch and highest risk (Figs. 5b and 6b). Since 372 

only a few cohorts are present in a short life span species, they are relatively more 373 

responsive, dynamic and require quick management decisions to reduce the risk of stock 374 

collapse. The long lived species respond to fishing impacts relatively slow because of the 375 

large number of cohorts in their population and low fishing mortality applies to younger fish 376 

age groups (see the selectivity parameters, Table 2). In overall, the performances were 377 

better for the long lived species (LH3) since it gave the smallest spread of RAB distribution 378 

with least risk of stock collapse (Figs. 4b and 6b). 379 

Performance comparison with different initial states of the stock  380 
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The performance measures were significantly different when SS-CUSUM-HCR was applied 381 

to stocks that are historically fished below FMSY, at FMSY and above FMSY (p<0.001). However, 382 

the RAB performances were similar relative to their respective mean status-quo levels from 383 

where the SS-CUSUM-HCR started off (Fig. 4c). The catch performances were far below the 384 

status-quo levels for those with initial states at FMSY or above FMSY (Fig. 5c). Since the status-385 

quo fishing mortality is relatively high in these cases, the probability of status-quo catch 386 

being above MSY is high and thus the fishery may not sustain for too long. This is more 387 

evident from the B10 performances which showed an increase with higher Fint i.e., at FMSY 388 

and above FMSY (Fig. 6c). Additionally if the fishery starts off from an undesirable state (e.g. 389 

above FMSY), the SS-CUSUM-HCR may not sustain the status-quo because the initial years 390 

are not representative of the assumed ‘in-control’ fishery and thus leads to a running mean 391 

stabilizing at inappropriate levels.  392 

Performance comparison with selectivity pattern of the fishing gear 393 

The SS-CUSUM-HCR was tested for different types of selectivity patterns, under the 394 

assumption that the process was set-up for a large fish indicator from a medium mesh trawl 395 

net fishery. The performance measures were significantly different for all the selectivity 396 

patterns used in this study (p<0.001). However, the performances (of biomass and catch) 397 

compromised for each other such that a higher RAB leads to lower RAC or vice versa (Figs. 398 

4d and 5d). This shows that the sensitivity of large fish indicator is affected by selectivity 399 

patterns, particularly if the (assumed) large fish age groups are not fully vulnerable to the 400 

fishing gear. For example, the age (a) at S95% of the trawl net shifted from 5 to 7 when a 401 

large mesh size was used. This ended up catching smaller proportion of young fish (a ≤ 7), 402 

and thus affecting the indicator sensitivity where true fishing impacts are not correctly 403 

detected. The performance of B10 was highest for the large mesh sized trawl net (Fig. 6d) 404 

with a RAC exceeding the mean status-quo levels (Fig. 5d).  405 

Discussion 406 
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This study was conducted to assess whether a harvest strategy based on catch control rules 407 

and SS-CUSUM (SS-CUSUM-HCR) has the potential to manage data limited fish stocks. 408 

Though SS-CUSUM has been used previously for monitoring purposes (Lukas et al. 2008; 409 

2009; Pazhayamadom et al. 2013), this is the first study demonstrating its potential to 410 

manage a population. The SS-CUSUM-HCR is fundamentally different in four ways when 411 

compared to the DI-CUSUM-HCR presented in Pazhayamadom et al. (in press). First, an 412 

indicator reference point is not required for SS-CUSUM-HCR to initiate the management 413 

process whilst, the DI-CUSUM-HCR requires observations from a reference period when the 414 

fishery was percieved to be stable (Scandol 2003; Jensen et al., 2006; Pazhayamadom et al, 415 

in press). Secondly, the recruitment and large fish indicator in SS-CUSUM-HCR are 416 

combined only after updating the running parameters with the most recent observation. In 417 

DI-CUSUM-HCR, the indicators can be combined immediately after standardizing them with 418 

the control parameters. Thirdly in SS-CUSUM-HCR, the adjustment factor is applied to the 419 

TAC from the previous year whilst in DI-CUSUM-HCR, the adjustment factor is applied to a 420 

historical TAC when the last ‘in-control’ situation was signalled (because the reference point 421 

is dynamic for SS-CUSUM and fixed for DI-CUSUM). Finally, DI-CUSUM-HCR responds to 422 

all out-of-control signals whereas SS-CUSUM-HCR consider the direction of CUSUMs to 423 

determine whether the TAC in the previous year should be sustained or not. This is 424 

important because the SS-CUSUMs could stop moving away from zero if the running mean 425 

has changed from its initial state (because the management affect future indicator 426 

observations and the updated running mean may not necessarily represent an in-control 427 

situation). Thus considering the direction of CUSUMs in SS-CUSUM-HCR is consistent with 428 

the objective i.e., to sustain the status-quo levels (biomass and catch). However, this 429 

objective restricts the possibility of providing sustainable high catches (equivalent to those of 430 

the MSY) because the threshold and direction of shift required in the running mean (or state 431 

of the stock) is unknown. The proposed SS-CUSUM-HCR sustained the status-quo fishery 432 

and state of the stock for a wide range of scenarios (see Table 1; Appendix B). 433 
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Comparison of SS-CUSUM-HCR with other management systems 434 

Many authors have provided guidelines and examples for managing fisheries when data or 435 

information are limited (e.g. Froese et al. 2008; Dowling et al. 2008; Cope and Punt 2009; 436 

Wilson et al. 2010; Prince et al. 2011; Little et al. 2011; Cope 2013). However, these 437 

approaches are not fully comprehensive or adaptable in a data limited situation where no 438 

biological information or historical data are available for the fish stock. Many harvest 439 

strategies require a suite of indicators including catch rates or CPUE and appropriate 440 

reference points which may not necessarily be available for data limited fish stocks (Dowling 441 

et al. 2008; Wilson et al. 2010; Prince et al. 2011; Little et al. 2011). When compared to 442 

these strategies, the advantage of SS-CUSUM approach is the independence on the type of 443 

indicator that can be monitored (see Pazhayamadom et al. 2013). However, the chosen 444 

indicators should be sensitive and responsive to changes in state of the stock (Probst et al. 445 

2012, 2013).  446 

In Australia’s Harvest Strategy Policy (HSP), for example, the harvest control rules are 447 

associated with ‘tier-based’ assessment systems (Smith et al. 2008; Reuter et al. 2010) 448 

where, the ‘tier 4’ category (Rayns 2007) is applied to fish stocks that have the least 449 

information. These control rules are based on target catch rates (catch per unit effort) and 450 

an adjustment is triggered when the indicator crosses the limit reference points. However, 451 

the ‘tier 4’ policy could not be applied to the Western Deepwater Trawl Fishery due to a lack 452 

of meaningful reference points (Smith et al. 2009; Smith et al. 2014).  In such situations, the 453 

SS-CUSUM-HCR approach is feasible because the running mean and control limit could act 454 

as effective alternatives for the target and limit reference points respectively.  455 

Advantages of SS-CUSUM based management in a data limited context 456 

The foremost advantage of SS-CUSUM is the use of a running mean as the reference point 457 

for managing fish stocks. In the development of the Australian HSP (Dowling et al. 2008), to 458 

use the same example, the reference points were simply the “best guess” proxies informed 459 
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through the participation, discussion and agreement of various industry stakeholders. The 460 

SS-CUSUM model is useful in such situations where the reference points corresponding to 461 

the current state of fishery can be informed by incorporating observations that are available 462 

so far. The second advantage is the use of the ‘control limit’ in SS-CUSUM, which provides a 463 

simple and explicit framework for defining trigger levels so that it informs the manager when 464 

a management response can be initiated (regardless of the choice of strategy such as the 465 

proposed SS-CUSUM-HCR in this paper). An example application is in the Australian HSP 466 

where multiple trigger levels are defined for data limited fish stocks, each one associated to 467 

higher data and analysis requirements (Dowling et al. 2008). The SS-CUSUM can be useful 468 

in these situations where the number of trigger levels can be reduced and no further data or 469 

assessment is required to initiate a management process. The third advantage is the 470 

simplistic nature of decision making when there are multiple indicators to be monitored. 471 

Previous studies have demonstrated TAC adjustment strategies based on multiple indicators 472 

(Wilson et al. 2010; Prince et al. 2011) but the control rules are overcrowded (one for each 473 

indicator) leading to complex decision trees. In SS-CUSUM-HCR, the information from all 474 

indicators is passed on to the control chart and TAC is adjusted only when the SS-CUSUM 475 

exceed control limits. If more indicators are available, then a multivariate self-starting control 476 

chart can be used (Sullivan and Jones 2002; Hawkins and Maboudou-Tchao 2007) instead 477 

of combining them individually (e.g. RWp indicator). Thus, the management approach based 478 

on SS-CUSUM is comparatively simple, pragmatic in real world situations, and can easily be 479 

understood by the fishers and other stakeholders (Scandol 2003; Kelly and Codling 2006). 480 

The SS-CUSUM parameters 481 

The allowance (k) and control limits (h) in CUSUM based control charts can be configured to 482 

obtain a fixed sensitivity (the probability of detecting an out-of-control situation when it 483 

occurs) or specificity (the probability of not detecting an out-of-control situation when it does 484 

not exist). Fixing a lower constant for k and h will increase the sensitivity of the SS-CUSUM, 485 

but decreases its specificity (Scandol 2003, 2005). In a previous study, Pazhayamadom et 486 
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al. (2013) showed that the k or h constants required for achieving an equal trade-off between 487 

sensitivity and specificity will depend on the longevity of the species i.e., for fixed k, the h 488 

increases with longevity. This is because the response of size based indicators will depend 489 

on the number of cohorts within the population. For example, short lived species will usually 490 

have a small number of cohorts and hence the changes in population abundance are more 491 

dynamic. If the h is set too high, then the stock may collapse quickly giving no time for the 492 

SS-CUSUM to signal the out-of-control situation. Hence if no biological information is 493 

available for the species, a low constant should be chosen for the k and h (though a higher k 494 

converges the running mean to the intended reference point). This approach may increase 495 

the frequency of false positive signals in a long lived species but it will be more 496 

precautionary to adjust the TAC early so that the SS-CUSUM-HCR management is proactive 497 

(rather than not reacting until a signal is raised, see Appendix B).  498 

Limitations and ways to improve the proposed SS-CUSUM-HCR approach 499 

We demonstrated the status-quo management of SS-CUSUM-HCR in a data limited 500 

situation but, their application is limited if the stock is initially in an undesirable state (and the 501 

state could be unknown in the real world). In practice, a very large proportion of fisheries 502 

seem to exhibit fishing mortality rates excess of MSY levels (Froese et al. 2011; Costello et 503 

al. 2012). If SS-CUSUM-HCR starts off from an undesirable state, then a delay in response 504 

may occur and the reasons for this are inherent to SS-CUSUM. First, the observations from 505 

the first few years will be used to compute the running parameters and this may represent a 506 

fish stock that is already in an undesirable state. Secondly, the population should deplete 507 

further to generate meaningful alarms from SS-CUSUM via indicators. One solution is to 508 

configure the SS-CUSUM parameters (w, k and h) to generate signals at the earliest 509 

possible so the associated risks can be minimized (see Appendix B). However if more 510 

information on the desired state of the stock is available (a reference point), then the initial 511 

running parameters of SS-CUSUM can be adapted to stabilize at these levels (see below). 512 
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The second issue with the SS-CUSUM-HCR approach is its tendency of getting 513 

inappropriate running means (Fig. 3). This largely depends on the first three data points in 514 

the indicator time series and whether those observations really represent the actual state of 515 

the fish stock. This is because the first three observations are neither controlled by the 516 

winsorizing constant (the w which will avoid outliers if any) nor monitored by the SS-CUSUM 517 

(which will detect out-of-control situations if any) but instead, they are used to obtain an 518 

initial value for the running mean and running standard deviation. One solution to this 519 

problem is to use robust indicators that may not have large inherent variations, relative to the 520 

state of the stock (Essington 2010). To stabilize the indicator observations, it is useful to 521 

keep the catch constant for the first few years unless there is evidence indicating an 522 

increase in the fishing pressure (MacCall 2009). The initial observations in the time series 523 

can also be replaced with plausible values if an estimate of the reference point (or control 524 

mean indicating the desired state of stock) can be deduced from local fishers or scientists 525 

who are familiar with the fishery (Hawkins and Olwell 1998).  526 

The third issue with SS-CUSM-HCR is the judgement on setting the initial TAC. Unless the 527 

initial TAC is conservative enough with regard to the MSY, then the stock may collapse (Fig. 528 

3). If an estimate of the MSY of the fish stock is available then the control rules can be 529 

modified so that the catch never exceeds this threshold limit (Garcia et al. 1989; Walters and 530 

Pearse 1996; Lande et al. 1997). A second alternative is to configure the initial TAC to start 531 

off from a quantity that is significantly lower than the historical landings, so that the catches 532 

are likely sustainable with reduced risk of stock collapse (Kell et al. 2012; Pazhayamadom 533 

2013). The harvest strategy can also be improved by monitoring indicators from fishery 534 

independent surveys and closing the fishery until an in-control situation is signalled by the 535 

SS-CUSUM. As more information becomes available, the TAC adjustment factors can also 536 

be computed using data rich methods that are available in the EPC theory (Tercero-Gómez 537 

et al. 2014; Luceño 1992; Box and Kramer 1992; Wiklund 1995).  538 

Future developments 539 
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Data limited situations which can be inherently complex and highly uncertain in terms of the 540 

overall biomass, spatial extent and the ways in which they are harvested; may require more 541 

consideration. An example is the Coral Sea Fishery (CSF) in Australia where there is no 542 

information for multiple species regarding the size of the resource or exploitation rates, level 543 

of species misidentification and the variability of annual catches for individual species 544 

(Dowling et al. 2008). The indicators and estimation techniques appropriate for such 545 

scenarios will require further research. One potential approach is to extend the application of 546 

SS-CUSUM-HCR from a single-species basis to an ecosystem level.  547 

Fishing can have a greater impact on slower growing, larger species with later maturity and 548 

thus reduces the mean body size within populations leading to an increase in the relative 549 

abundance of smaller species (Jennings et al. 1999). Small species may also proliferate 550 

when their larger predators are reduced (Dulvy et al. 2004). Hence species richness and 551 

other diversity indices are often proposed as indicators sensitive to ecological conditions of 552 

the marine habitat (Greenstreet and Hall 1996). Such ecosystem based approaches will 553 

require the monitoring of multiple indicators and thus require the development of HCRs 554 

based on multivariate control charts.  555 

A key problem in multivariate control charts is the probability of false alarms if the indicators 556 

are autocorrelated. Hawkins and Olwell (1998) demonstrated how CUSUM can be adapted 557 

for monitoring an autocorrelated process using a Box-Jenkins autoregressive-moving 558 

average (ARMA) model. Similarly, Manly and Mackenzie (2000) also proposed a modified 559 

CUSUM using randomization tests to minimize the impact of serial correlation. Such models 560 

can be explored in future studies to improve the performance of the proposed management 561 

procedure. Nevertheless, our study suggests that the SS-CUSUM-HCR has great potential 562 

for managing data limited fisheries in a sustainable manner.  563 
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Appendix A. SS-CUSUM computation 767 

A1. Indicator transformation 768 

In self-starting CUSUM we assume that the indicator observations come from an in-control 769 

        distribution (though it still worked when this assumption was violated). Now let:- 770 

(6)             
  

    771 

Where, Xi is the indicator observation from year ‘i’,     is the running mean and Wn is the 772 

sum of squared deviations of the first ‘n’ year observations. The running standard deviation 773 

of the first ‘n’ observations is then given by 774 

(7)               775 

Standardizing each observation with the running mean and the running standard deviation 776 

obtained until the preceding observations gives: 777 

(8)                      778 

The exact cumulative distribution function of Tn is then given by: 779 

(9)                  
     

 
  780 

Where fn-2 stands for the cumulative distribution function of the Student’s ‘t’ distribution with 781 

n-2 degrees of freedom. Taking an inverse normal function (   ) of fn-2 will transform the 782 

“studentized” CUSUM quantity Tn into a random variable Zn for all n>2. Since Zn is 783 

statistically independent of the standard deviation of indicator observations, by transforming 784 

Tn to their Zn counterparts we get a sequence of independent N(0,1) values to CUSUM. 785 

(10)      
               786 

(11)             787 
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Once the Zn are generated, they can be used in a Decision Interval form of Cumulative Sum 788 

(DI-CUSUM) control chart (Appendix A2). The updates for the running mean and variance 789 

can be simplified by the following calculation: 790 

(12)                                                                                                                                   791 

(13)                   
    792 

Where, dn is the deviation of Xn from the running mean       793 

A2. Decision interval form of CUSUM 794 

Standardized values of time series data are converted to upper and lower CUSUMs using 795 

the following equations (Montgomery 1996; Hawkins and Olwell 1998): 796 

(14)   
    and   

     797 

(15)   
             

         and   
             

        798 

Where,   
  and   

  are upper and lower CUSUMs obtained respectively in the nth year and k 799 

is the allowance parameter. The CUSUM signals an out of control situation when:  800 

(16)   
 > +h or   

 < -h, 801 

where, +h and -h are the control limits applied to both upper (  
 ) and lower (  

 ) CUSUMs 802 

respectively.  803 

A3. Metric Winsorization 804 

Metric winsorization can be applied to the formula for updating the running mean and 805 

standard deviation. The extreme outliers can be replaced with a cut off threshold value 806 

known as the winsorizing constant (w). Therefore extreme changes in the indicator are not 807 

completely omitted but contributed to the CUSUM process.  808 
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(17)     

                  

                          

                

  809 

Appendix B. Supplementary data 810 

Supplementary data associated with this article can be found in the online version 811 
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Table 1. Four types of fishery scenarios are considered for evaluating the performance of 812 

SS-CUSUM-HCR and they are based on  (1) the number of historical data available for the 813 

indicators (when the SS-CUSUM-HCR initiate); (2) life history traits of the species (see Table 814 

2); (3) state of the stock when the management initiated i.e., below FMSY(Fint=0.053 yr-1; 815 

BEQ=0.69 BUF), at FMSY(Fint=0.23 yr-1; BEQ=0.27 BUF), above FMSY(Fint=0.327 yr-1; BEQ=0.16 816 

BUF); and (4) selectivity pattern of the gear used for fishing (sigmoid shape for trawl and 817 

dome shape for gill net; see Appendix B). 818 

Scenario 
Historical data 

available 

Life history 

species 

Initial state of the 

fish stock 

Shape of gear 

selectivity 

Scenario 1 

2 years* 

LH2* Below FMSY* Sigmoid (Medium mesh)* 
4 years 

6 years 

8 years 

Scenario 2 2 years 

LH1 

Below FMSY Sigmoid (Medium mesh) 
LH2 

LH3 

Scenario 3 2 years LH2 

Below FMSY 

Sigmoid (Medium mesh) 
At FMSY 

Above FMSY 

Scenario 4 2 years LH2 Below FMSY 

Sigmoid (Small mesh) 

Sigmoid (Medium mesh) 

Sigmoid (Large mesh) 

Dome (Medium mesh) 

*  Indicate the parameters used in the base case scenario 
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Table 2. Parameters used for the simulation of fish stocks and their fishery was determined 819 

from the ICES fish stock summary database (ICES 2010; ICES 2011) and the unpublished 820 

data in FishBase (Froese and Pauly 2011).  821 

Parameters 
Life History 1 (LH1) 

Short life span 

Life History 2 (LH2)  

Medium life span 

Life History 3 (LH3) 

Long life span 

Von Bertalanffy growth function 

 

   

Asymptotic length (L∞ ) 30 cm 129.1 cm 49.2 cm 

Age at length 0 (a0) -1.6 yr -0.82 yr -2.19 yr 

Growth coefficient  (K) 0.41 0.14 0.07 

Natural mortality (m) 0.23 yr
-1
 0.21 yr

-1
 0.15 yr

-1
 

Plus-group (amax) 6 yr 10 yr 30 yr 

  

 

   

Length-Weight relationship 

 

   

Coefficient (c) 0.006 0.0104 0.0113 

Exponent (d) 3.09 3 3.08 

  

 

   

Re-parameterised Beverton-

Holt recruitment function 

 

   

Steepness (z) 0.90 0.75 0.60 

  

 

   

Maturity parameters 

 

 

 Age at 50% maturity (    ) 1.8 yr 2.5 yr 13 yr 

Age at 95% maturity (    ) 3 yr 3 yr 20 yr 

  

 

 Selectivity parameters (trawl) 

 

 

 Age at 50% selectivity (    ) 2.2 yr 3 yr 14 yr 

Age at 95% selectivity (    ) 2.6 yr 5 yr 17 yr 

  

 

   822 
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Fig. 1. Graphical illustration of SS-CUSUM-HCR from single iteration of the base case: (a) & 823 

(b) shows the recruitment and LFI with their respective running means; (c) shows the 824 

combined indicator obtained by summing up the transformed R and Wp; (d) SS-CUSUM 825 

generated from the combined indicator; (e) & (f) changes in TAC, catch, stock biomass and 826 

fishing mortality in response to the SS-CUSUM. The TAC was reduced on 14, 16 and 18-827 

20th year of the fishery simulation due to a large negative signal from the SS-CUSUM.  828 
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Fig. 2. Performance of SS-CUSUM-HCR from the base case indicating changes in:  (a) SS-829 

CUSUM; (b) stock biomass; (c) fishing mortality; (d) fisheries catch and (e & f) the dynamics 830 

of running means from all iterations of the fishery simulation. The state of the stock was 831 

sustained close to mean status-quo levels from where the SS-CUSUM-HCR stated off. 832 
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Fig. 3. Graphical illustration of a collapsed fish stock from the base case:  (a & b) the running 833 

mean of recruitment and large fish indicator stabilizing far below the mean status-quo levels; 834 

(c & d) the combined indicator and SS-CUSUM with disproportionate signals; (e) resulting in 835 

an increase of the TAC from status-quo levels above MSY and (f) the deterioration of stock 836 

biomass leading to high levels of fishing mortality from status-quo.   837 
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Fig. 4. Relative average biomass obtained for different scenarios: (a) number of historical 838 

observations available when the management initiated, (b) life span of the species, (c) state 839 

of the stock when the management initiated and (d) selectivity pattern of the fishing gear 840 

(L=large, M=medium and S=small mesh). The dashed line indicate mean status-quo levels 841 

and the performances with same letters in the square brackets indicate no significant 842 

difference between each other at p<0.001.  843 
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Fig. 5. Relative average catch obtained for different scenarios: (a) number of historical 844 

observations available when the management initiated, (b) life span of the species, (c) state 845 

of the stock when the management initiated and (d) selectivity pattern of the fishing gear 846 

(L=large, M=medium and S=small mesh). The dashed line indicate mean status-quo levels 847 

and the performances with same letters in the square brackets indicate no significant 848 

difference between each other at p<0.001.  849 
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Fig. 6. The B10 performances obtained for different scenarios: (a) number of historical 850 

observations available when the management initiated; (b) life span of the species; (c) state 851 

of the stock when the management initiated and (d) selectivity pattern of the fishing gear 852 

(L=large, M=medium and S=small mesh). Performances with same letters in the square 853 

brackets indicate no significant difference between each other at p<0.001.  854 
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Table A1. This table shows the steps to be followed after indicator transformation in SS-855 

CUSUM (w=1, k=1.5 and h=0); the H-counter indicates the number of observations 856 

since    
       and in this example, no adjustment is applied to TAC in the 22nd year 857 

because the SS-CUSUM is moving towards zero (     
       

 ). 858 

     
     
 

     
  

     
 

     
  

     
 

     
  

     

 
 
     

 
 
     

 
        

Year 
Recruitment 

after indicator 
transformation 

LFI after  
Indicator 

transformation 

Combined 
Indicator 

Upper 
SS-CUSUM 

H-counter 
for   

  
Lower 

SS-CUSUM 
H-counter 

for   
  

i   
    

  
 

  
   

 

(  
    

  
) 

  
    

    
    

  

1 0.00 0.00 0.00 0.00 0 0.00 0 

2 0.00 0.00 0.00 0.00 0 0.00 0 

3 -0.27 -0.58 -0.85 0.00 0 0.00 0 

4 0.71 0.71 1.42 0.00 0 0.00 0 

5 -0.54 0.77 0.23 0.00 0 0.00 0 

6 0.37 0.43 0.80 0.00 1 0.00 0 

7 -0.85 0.77 -0.08 0.00 0 0.00 0 

8 -0.53 0.28 -0.25 0.00 0 0.00 0 

9 0.16 0.39 0.55 0.00 0 0.00 0 

10 -0.90 -0.17 -1.07 0.00 0 0.00 0 

11 -0.83 0.81 -0.02 0.00 0 0.00 0 

12 0.50 0.33 0.83 0.00 0 0.00 0 

13 -0.92 0.44 -0.48 0.00 0 0.00 0 

14 -0.74 -0.92 -1.66 0.00 0 -0.16 1 

15 0.52 -0.94 -0.42 0.00 0 0.00 0 

16 -0.94 -0.84 -1.78 0.00 0 -0.28 1 

17 -0.45 -0.33 -0.78 0.00 0 0.00 0 

18 -0.94 -0.94 -1.88 0.00 0 -0.38 1 

19 -0.94 -0.94 -1.88 0.00 0 -0.76 2 

20 -0.94 -0.94 -1.88 0.00 0 -1.14 3 

21 -0.03 -0.96 -0.99 0.00 0 -0.63 4 

22 -0.96 -0.28 -1.24 0.00 0 -0.37 5 

  859 
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Supplementary data 860 

S1. The operating model 861 

The current study used the following steps to simulate an age structured virtual fish stock. 862 

The recruits enter the fishery at age 0 in the operating model. The life history parameters for 863 

different fish stocks are provided in Table 2 of the main paper. 864 

I. Weight at age ‘a’ in year ‘i’ (  
 ) followed an isometric von Bertalanffy growth 865 

function (VBGF) of the form (Bertalanffy 1934): 866 

(S.1)   
                     

            867 

   
     

          
           , 868 

    
                             , 869 

    
                           , 870 

where cv is the coefficient of variation of the distribution, ‘ln(c)’ is the intercept, ‘d’ is 871 

the slope of length-weight relationship,   
   is the length at age ‘a’,    is the 872 

asymptotic length,   
   is the growth coefficient and a0 is the age when length is zero 873 

(Table 2). This equation was applied independently for each age group of the stock. 874 

II. Maturity-at-age (  ) was fixed throughout the years in the fishery simulation and was 875 

computed based upon the logistic function: 876 

(S.2)                               
      

         
  
  
  877 

where a50% and a95% are the age groups for which 50% and 95% of the cohort are 878 

mature respectively. 879 

III. Spawning stock biomass for year ‘i’ (SSBi) was calculated as: 880 

(S.3)             
     

   
    
    881 

where   
  is the number of individuals with age ‘a’ in year ‘i’ within the fish stock. 882 

IV. The recruits to the fish stock in year ‘i’ (  ) followed a Beverton-Holt stock recruitment 883 

function (Beverton and Holt 1957) that had been re-parameterised to the steepness 884 
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of the stock–recruitment relationship (z), initial biomass (B0) and initial recruitment 885 

(  ) as given by Mace and Doonan (1988): 886 

(S.4)                                      887 

              ;                    888 

           
                and                     

  , 889 

where ‘SSB’ is the spawning stock biomass,   is the autocorrelation (     ) in the 890 

recruitment deviations ( ) and   
  is the variance of the log recruitment residuals 891 

(  
     ).  892 

V. The population numbers at age ‘a’ for year ‘i’  (  
 ) was updated by: 893 

(S.5)   
   

        

    
            

               

    
            

         
          

            

   894 

where   
  is the fishing mortality for age ‘a’ in year ‘i’ and m=0.2 is the natural 895 

mortality of the fish population. The model was initialized with   
              896 

and            . 897 

VI. The initial fishing mortality (    ) for the three different life history species were 898 

configured to 50% MSY at fishery equilibrium i.e.,     
   

 = 0.15 (    
    = 0.84),     

    = 899 

0.05 (    
    = 0.23) and     

   
 = 0.04 (    

    = 0.20). These values lead to a biomass of 900 

69% BUF (2.6 BMSY), 62% (2.4 BMSY) and 82% (1.8 BMSY) respectively at fishery 901 

equilibrium. The fishing mortality    
   at age for year ‘i’ was calculated as: 902 

(S.6)   
                                        903 

where    is the selectivity-at-age indicating the vulnerability to the fishing gear and 904 

the random multiplier is same across all age groups in a given year. 905 

VII. Selectivity-at-age (   ) was fixed throughout the years in the fishery simulation.  906 

i) The    for trawl net followed the logistic function in eq. S.2 and gave a sigmoid 907 

shape selectivity pattern. The parameters used for the three life history species 908 

are      
       = 2.2,     

       = 2.6,     
      = 3,     

       = 5,     
       = 14 and     

       = 909 
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17. The base case represented a medium mesh size trawl net. Selectivity 910 

parameters for small mesh trawl net were     
       = 2,     

       = 3 and for large 911 

mesh trawl net were     
       = 6,     

      = 7.  912 

ii) The      for gill net followed the double-normal function (Candy 2011) and gave a 913 

dome shaped selectivity pattern. 914 

(S.7)       

 
 
 

 
  

  
     

  
 
 

         

 
  

     

  
 
 

      
         

  915 

where   is a cut-point parameter corresponding to the age at which        ,    916 

and    are parameters denoting the standard deviations of the scaled normal 917 

density functions specifying the lower and upper arms of the function. In the 918 

present study, the parameters   ,  ,    and    were set to 0, 5.5, 2 and 4 919 

respectively so that 95% selectivity occurs at age 5 as used in the base case. 920 

VIII. Baranov’s catch equation (Baranov 1918) was used to calculate the catch numbers 921 

at age ‘a’ in year ‘i’    
  : 922 

(S.8)   
    

  
  
 

  
   

           
          923 

S2. The observation model 924 

Two indicators were measured from the stock i.e., the number of individuals recruited to the 925 

zero age group (R) and the proportion of large fish individuals in the landed catch (Wp). 926 

IX. The observed stock-recruitment in year ‘i’ (  ) was measured using a coefficient of 927 

variation (cv) from the lognormal distribution: 928 

(S.9)                               929 

X. The Wp was computed using a random sample of fish individuals from the landed 930 

catch (  
 ). The sample function in R (R Core Team 2014) was used to draw ‘n’ 931 

individuals without replacement from the set of all individuals in the landed catch for 932 
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the ith year. Further, the cumulative sum of individual weight was computed using 933 

those which belonged to age groups that were 95% or more selective to the fishing 934 

gear (a ≥ S95%) i.e., the abundance of large fish individuals by weight. Their 935 

proportion to the total sample catch weight was the Wp indicator for year ‘i’. 936 

(S.10)     
     

            
   
   

   
  937 

where ‘j’ indicate individual fish in the sample,     is the total weight of the catch 938 

sample obtained in year ‘i’ and      denotes indicator function defined by 939 

      
               
               

  

S3. Additional scenarios for SS-CUSUM-HCR 940 

Additional scenarios were used to evaluate the management based on SS-CUSUM-HCR 941 

(Table S1) and the performance measures are presented in Figs. S1 to S6. 942 

Performance comparison with different winsorizing constants (w)  943 

A higher w means that with subsequent updates, the deviation in observations will end up in 944 

larger steps taking the running mean far away from its initial state. This effect has been 945 

illustrated in Fig. 2f where the progression of running means remained farther away from the 946 

intended reference point when the constant was w=3. The RAB and RAC shows that the 947 

performances are significantly different if the choice is w=3 (Figs. S1a and S3a). The risk of 948 

stock collapse was also higher when w=3 though not significantly different when compared 949 

to lower constants (p=0.23; Fig. S5a). We found that a low constant such as w=1 in SS-950 

CUSUM may provide relatively higher average catch performances (Fig. S3a).  951 

Performance comparison with different allowance constants (k) 952 

The allowance constant ‘k’ is a threshold mechanism used in SS-CUSUM where a certain 953 

amount of indicator deviation (from the running mean) is considered inherent to the process 954 

and not due to factors such as fishing. Accounting such natural variability helps improve the 955 
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specificity of SS-CUSUM-HCR i.e., responding only when the deviations are consistent and 956 

large. However, increasing the allowance could miss a signal if the indicator deviations are 957 

not consistent over time. Results show that k>1.5 could result in significantly lower RAB, 958 

higher RAC and higher B10 performances (p<0.001; Figs. S1b, S3b and S5b). 959 

Performance comparison with different control limits (h)  960 

The control limit ‘h’ is a threshold mechanism used to decide whether the SS-CUSUM is 961 

large enough to raise an alarm.  A higher ‘h’ will only cause a delay in triggering the HCR 962 

and may affect the variability of catch. However, the adjustment factor is not affected as all 963 

indicator deviations are still accounted in SS-CUSUM even when a higher ‘h’ is used (which 964 

is not the case when a higher ‘k’ is used). The performance measures are significantly 965 

different with higher ‘h’ (p<0.001; Figs. S1c, S3c and S5c) though the effects are not evident 966 

for values greater than h=1 (the latter may be the case where SS-CUSUM signals are large 967 

but the TAC adjustments are curbed by      configured in the SS-CUSUM-HCR). 968 

Performance comparison with different TAC restrictions in SS-CUSUM-HCR 969 

The SS-CUSUM-HCR was tested by relaxing the margin of inter annual TAC restrictions, 970 

thus allowing the method to make large adjustments in catch. Results show that increasing 971 

the      may result in relatively higher RAB and lower RAC (Figs. S1d and S3d), thus are 972 

useful to apply when a conservative approach is required. Results also show that this 973 

reduced the probability of stock depletion or collapse (Fig. S5d). However, relaxing the TAC 974 

restrictions should be adopted with caution in practice because the probability of stock 975 

collapse may increase if the fishery started off from an undesirable state (i.e., above FMSY). 976 

Performance comparison with observation errors in the indicators  977 

The SS-CUSUM-HCR was tested for observation errors in recruitment (simulated using 978 

different coefficient of variation) and large fish indicator (using different sample size of the 979 

catch). Results in general show that higher observation errors in indicators may result in 980 
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lower RABs and higher RACs (Figs. S2a, S2b, S4a and S4b). The performance measure of 981 

sample sizes in particular was significantly different only if they are very small such as n=10 982 

individuals (p<0.001; Figs. S2b and S4b). In the real world, smaller sample sizes are realistic 983 

but may not represent a truly random catch sample and hence should be very cautious with 984 

the SS-CUSUM-HCR performance. The B10 performances indicate that there are no 985 

significant difference for observation errors in the indicator (p<0.001; Figs. S6a and S6b).  986 

Performance comparison for        and        thresholds in SS-CUSUM-HCR  987 

In this study, we assume that there is no information of MSY of the fish stock. Hence 988 

additional response levels are required in SS-CUSUM-HCR to reduce the chances of 989 

harvesting large unsustainable catches that are above MSY. In the base case, this was 990 

achieved by using a small multiplier such as 1% for        and       . Increasing these 991 

thresholds clearly showed that the performance measures are significantly different from the 992 

base case resulting in relatively lower RABs, higher RACs and higher proportion of stock 993 

depletions (Figs. S2c, S2d, S4c, S4d, S6c and S6d). If there is reliable information on MSY 994 

of the stock, then these thresholds can be replaced by MSY to avoid increasing the TAC 995 

above such levels or by a multiplier of MSY that may ensure long term sustainable yields.  996 
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Table S1. Six additional scenarios were considered for evaluating the performance of SS-1012 

CUSUM-HCR and they are based on different (1) winsorizing constants in SS-CUSUM (w); 1013 

(2) allowance constants in SS-CUSUM (k); (3) control limits in SS-CUSUM (h); (4) annual 1014 

TAC restrictions; (5) observation error in the recruitment indicator (using coefficient of 1015 

variation of the log-normal distribution); (6) observation error in the large fish indicator (by 1016 

changing the number of samples from the fisheries catch); (7) TAC increments when SS-1017 

CUSUM indicate “in-control” and (6) TAClim to restrict the maximum TAC allowed. 1018 

Scenario w k h 

Annual TAC 

restriction 

(TAC
R
) 

Observation 

error in R 

(cv) 

Sample 

size (n) 

TAC 

increment 

(TACinc) 

Maximum TAC 

restriction 

(TAClim) 

Scenario 5 

w=1* 

k=1.5* h=0.0* TAC
R
=10%* cv=0.6* n=1000* TACinc=1%* TAClim=1%* w=2 

w=3 

Scenario 6 w=1 

k=0.5 

h=0.0 TAC
R
=10% cv=0.6 n=1000 TACinc=1% TAClim=1% 

k=1.0 

k=1.5 

k=2.0 

Scenario 7 w=1 k=1.5 

h=0.0 

TAC
R
=10% cv=0.6 n=1000 TACinc=1% TAClim=1% 

h=0.5 

h=1.0 

h=1.5 

Scenario 8 w=1 k=1.5 h=0.0 

TAC
R
=10% 

cv=0.6 n=1000 TACinc=1% TAClim=1% 
TAC

R
=20% 

TAC
R
=30% 

TAC
R
=40% 

Scenario 9 w=1 k=1.5 h=0.0 TAC
R
=10% 

cv=0.2 

n=1000 TACinc=1% TAClim=1% 
cv=0.4 

cv=0.6 

cv=0.8 

Scenario 10 w=1 k=1.5 h=0.0 TAC
R
=10% cv=0.6 

n=1000 

TACinc=1% TAClim=1% n=100 

n=10 

Scenario 11 w=1 k=1.5 h=0.0 TAC
R
=10% cv=0.6 n=1000 

TACinc=1% 

TAClim=1% 
TACinc=5% 

TACinc=10% 

TACinc=20% 

Scenario 12 w=1 k=1.5 h=0.0 TAC
R
=10% cv=0.6 n=1000 TACinc=1% 

TAClim=1% 

TAClim=5% 

TAClim=10% 

TAClim=20% 

* parameters used in the base case scenario 
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Fig. S1. Relative average biomass obtained for different (a) winsorizing constants in SS-1019 

CUSUM, (b) allowances in SS-CUSUM (c) control limits in SS-CUSUM and (d) inter-annual 1020 

restrictions in total allowable catch. The dashed line indicate mean status-quo levels and the 1021 

performances with same letters in the square brackets indicate no significant difference 1022 

between each other at p<0.001.  1023 
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Fig. S2. Relative average biomass obtained for different (a) coefficient of variation in the 1024 

recruitment indicator, (b) number of individuals used for the computation of large fish 1025 

indicator, (c) TAC increments allowed at ‘in-control’ situations and (d) TAClim that restricted 1026 

the maximum TAC in SS-CUSUM-HCR. The dashed line indicate mean status-quo levels 1027 

and the performances with same letters in the square brackets indicate no significant 1028 

difference between each other at p<0.001.  1029 



54 
 

 
Fig. S3. Relative average catch obtained for different (a) winsorizing constants in SS-1030 

CUSUM, (b) allowances in SS-CUSUM (c) control limits in SS-CUSUM and (d) inter-annual 1031 

restrictions in total allowable catch. The dashed line indicate mean status-quo levels and the 1032 

performances with same letters in the square brackets indicate no significant difference 1033 

between each other at p<0.001.  1034 
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Fig. S4. Relative average catch obtained for different (a) coefficient of variation in the 1035 

recruitment indicator, (b) number of individuals used for the computation of large fish 1036 

indicator, (c) TAC increments allowed at ‘in-control’ situations and (d) TAClim that restricted 1037 

the maximum TAC in SS-CUSUM-HCR. The dashed line indicate mean status-quo levels 1038 

and the performances with same letters in the square brackets indicate no significant 1039 

difference between each other at p<0.001.  1040 
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Fig. S5. The B10 performances obtained for different (a) winsorizing constants in SS-1041 

CUSUM, (b) allowances in SS-CUSUM (c) control limits in SS-CUSUM and (d) inter-annual 1042 

restrictions in total allowable catch. Performances with same letters in the square brackets 1043 

indicate no significant difference between each other at p<0.001.  1044 
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Fig. S6. The B10 performances obtained for different (a) coefficient of variation in the 1045 

recruitment indicator, (b) number of individuals used for the computation of large fish 1046 

indicator, (c) TAC increments allowed at ‘in-control’ situations and (d) TAClim that restricted 1047 

the maximum TAC in SS-CUSUM-HCR. Performances with same letters in the square 1048 

brackets indicate no significant difference between each other at p<0.001. 1049 


