
Establishing reference samples for detection of somatic 1 

mutations and germline variants with NGS technologies 2 

 3 
Li Tai Fang1*, Bin Zhu2*, Yongmei Zhao3*, Wanqiu Chen4, Zhaowei Yang4,30, Liz Kerrigan5, Kurt 4 
Langenbach5, Maryellen de Mars5, Charles Lu6, Kenneth Idler6, Howard Jacob6, Ying Yu7, Luyao 5 
Ren7, Yuanting Zheng7, Erich Jaeger8, Gary Schroth8, Ogan D. Abaan8, Justin Lack3, Tsai-Wei Shen3, 6 
Keyur Talsania3, Zhong Chen4, Seta Stanbouly4, Jyoti Shetty9, Bao Tran9, Daoud Meerzaman10, Cu 7 
Nguyen10, Virginie Petitjean11, Marc Sultan11, Margaret Cam12, Tiffany Hung13, Eric Peters13, 8 
Rasika Kalamegham13, Sayed Mohammad Ebrahim Sahraeian1, Marghoob Mohiyuddin1, Yunfei 9 
Guo1, Lijing Yao1, Lei Song2, Hugo YK Lam1, Jiri Drabek14,15, Roberta Maestro15,16, Daniela 10 
Gasparotto15,16, Sulev Kõks15,17,18, Ene Reimann15,18, Andreas Scherer19,15, Jessica Nordlund20,15, 11 
Ulrika Liljedahl20,15, Roderick V Jensen21, Mehdi Pirooznia22, Zhipan Li23, Chunlin Xiao24, Stephen 12 
Sherry24, Rebecca Kusko25, Malcolm Moos26, Eric Donaldson27, Zivana Tezak28, Baitang Ning29, Jing 13 
Li30, Penelope Duerken-Hughes31, Huixiao Hong29#, Leming Shi7#, Charles Wang4,31#, Wenming 14 
Xiao28,29#, and The Somatic Working Group of SEQC-II Consortium 15 
 16 
1Bioinformatics Research & Early Development, Roche Sequencing Solutions Inc., 1301 Shoreway 17 
Road, Suite #300, Belmont, CA 94002; 2Division of Cancer Epidemiology and Genetics, National 18 
Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 19 
20892, USA.; 3Advanced Biomedical and Computational Sciences, Biomedical Informatics and 20 
Data Science Directorate, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, 21 
Frederick, MD21701; 4Center for Genomics, Loma Linda University School of Medicine, 11021 22 
Campus St., Loma Linda, CA 92350; 5ATCC (American Type Culture Collection), 10801 University 23 
Blvd, Manassas, VA 20110; 6Computational Genomics, Genomics Research Center (GRC), AbbVie, 24 
1 North Waukegan Road, North Chicago, IL 60064; 7State Key Laboratory of Genetic Engineering, 25 
School of Life Sciences and Shanghai Cancer Center, Fudan University, 2005 SongHu Road, 26 
Shanghai, China 200438; 8Core applications group, Product development, Illumina Inc , 200 27 
Lincoln Centre Dr. Foster City, CA 94404; 9Genomics Laboratory, Cancer Research Technology 28 
Program, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, 29 
MD21701; 10Computational Genomics Research, Center for Biomedical Informatics and 30 
Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, 31 
MD 20850; 11Biomarker development, Novartis Institutes for Biomedical Research, Fabrikstrasse 32 
10, CH-4056 Basel, Switzerland; 12CCR Collaborative Bioinformatics Resource (CCBR), Office of 33 
Science and Technology Resources, Center for Cancer Research, NCI, Bldg 37, Rm 3041C, 37 34 
Convent Drive, Bethesda, MD 20892; 13Companion Diagnostics Development, Oncology 35 
Biomarker Development, Genentech, 1 DNA Way, South San Francisco, CA 94080; 14IMTM, 36 
Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, 77900 Olomouc, 37 
the Czech Republic; 15member of EATRIS ERIC- European Infrastructure for Translational Medicine; 38 
16Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Unit of 39 
Oncogenetics and Functional Oncogenomics, Via Gallini 2, 33081 Aviano (PN), Italy; 17Perron 40 
Institute for Neurological and Translational Science, Verdun St, Nedlands, Western Australia, 41 
6009, Australia; 18 the Centre for Molecular Medicine and Innovative Therapeutics, Murdoch 42 
University, Murdoch, 6150, Western Australia; 19Institute for Molecular Medicine Finland (FIMM), 43 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprint (which. http://dx.doi.org/10.1101/625624doi: bioRxiv preprint first posted online May. 2, 2019; brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/227531417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1101/625624


HiLIFE, P.O.Box 20, FI-00014 University of Helsinki, Finland; 20Department of Medical Sciences, 44 
Molecular Medicine and Science for Life Laboratory, Uppsala University, Molekylär Medicin, Box 45 
1432, BMC, Uppsala, 75144 Sweden; 21Department of Biological Sciences, Virginia Tech, Life 46 
Sciences 1, 970 Washington St., Blacksburg, VA 24061; 22Bioinformatics and Computational 47 
Biology Core, National Heart Lung and Blood Institute, National Institutes of Health, 12 SOUTH 48 
DR. Bethesda MD 20892; 23Sentieon Inc., 465 Fairchild Drive, Suite 135, Mountain View CA 94043; 49 
24National Center for Biotechnology Information, National Library of Medicine, National 50 
Institutes of Health,45 Center Drive, Bethesda, Maryland 20894; 25Immuneering Corporation, 51 
One Broadway 14th Fl Cambridge MA 02142 USA; 26The Center for Biologics Evaluation and 52 
Research, U.S. Food and Drug Administration, FDA, Silver Spring, Maryland; 27Division of Antiviral 53 
Products, Office of Antimicrobial, Center for Drug Evaluation and Research, FDA, Silver Spring, 54 
Maryland; 28The Center for Devices and Radiological Health, U.S. Food and Drug Administration, 55 
FDA, Silver Spring, Maryland; 29Bioinformatics branch, Division of Bioinformatics and Biostatistics, 56 
National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, 57 
Jefferson, AR 72079; 30Departemnt of Allergy and Clinical Immunology, State Key Laboratory of 58 
Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of 59 
Guangzhou Medical University, Guangzhou, Guangdong, 510182, P. R. China; 31Department of 60 
Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350 61 

 62 
* Contributed equally 63 

# To whome correspondence should be addressed to: Wenming.Xiao@fda.hhs.gov, 64 
chwang@llu.edu, lemingshi@fudan.edu.cn and Huixiao.Hong@fda.hhs.gov 65 
 66 

Abstract 67 

 68 
We characterized two reference samples for NGS technologies: a human triple-negative 69 

breast cancer cell line and a matched normal cell line. Leveraging several whole-genome 70 
sequencing (WGS) platforms, multiple sequencing replicates, and orthogonal mutation detection 71 
bioinformatics pipelines, we minimized the potential biases from sequencing technologies, 72 
assays, and informatics. Thus, our “truth sets” were defined using evidence from 21 repeats of 73 
WGS runs with coverages ranging from 50X to 100X (a total of 140 billion reads). These “truth 74 
sets” present many relevant variants/mutations including 193 COSMIC mutations and 9,016 75 
germline variants from the ClinVar database, nonsense mutations in BRCA1/2 and missense 76 
mutations in TP53 and FGFR1. Independent validation in three orthogonal experiments 77 
demonstrated a successful stress test of the truth set. We expect these reference materials and 78 
“truth sets” to facilitate assay development, qualification, validation, and proficiency testing. In 79 
addition, our methods can be extended to establish new fully characterized reference samples 80 
for the community.  81 

 82 
 83 

Introduction 84 

  85 
In oncology, accurate somatic mutation detection is essential to diagnose cancer, pinpoint 86 
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targeted therapies, predict survival, and identify resistance mutations. Despite the recent 87 
explosion of technological advancements, many studies have reported difficulties in obtaining 88 
consistent and concordant somatic mutation calls from individual platforms or pipelines1–3, which 89 
hampers clinical validation and advancement of these biomarkers. 90 

 91 
As more sequencing technologies can detect clinically actionable somatic mutations for 92 

oncology, the need grows stronger for benchmark samples with known “ground-truth” variants. 93 
Such a publicly available sample set would allow platform and pipeline developers to quantify 94 
accuracy of somatic mutation calls, study reproducibility across platforms or pipelines, perform 95 
validation usig orthogonal techniques, and calibrate best practices of protocols and methods. The 96 
FDA has released a guidance on the use of NGS technologies for in vitro diagnosis of suspected 97 
germline diseases4, in which well-characterized reference materials are recommended to 98 
establish NGS test performance.  99 

 100 
In the absence of well-characterized samples with somatic mutations, normal samples 101 

such as the Platinum Genome5, HapMap6 cell lines, or Genome in a Bottle (GiaB) consortium 102 
materials7,8 are often used in clinical test development and validation of somatic applications. 103 
Also there are some gene-specific reference samples available, such as KRAS in the WHO 1st 104 
International Reference Panel9, or from synthetic materials10. Such samples do not adequately 105 
address cancer-specific quality metrics such as somatic mutation variant allele frequency (VAF), 106 
heterogeneity, tumor mutation burden (TMB), etc. Therefore, cancer reference samples with an 107 
abundance of well-defined genetic alterations characterized across the whole genome are highly 108 
desirable and urgent needed. 109 

 110 
Previous attempt has characterized a cancer cell line (from metastatic melanoma) that 111 

inquired somatic mutations (SNV/indels) in exon regions only. Germline variants and somatic 112 
mutations across the rest of the genome were not defined11. In addition, this dataset is 113 
distributed under dbGAP-controlled access, limiting its accesibility and utility. In fact, a recent 114 
landscape analysis of currently available somatic variant reference samples published by the 115 
Medical Devices Innovation Consortium (MDIC) did not identify any reference mutation sets that 116 
can be used to evaluate the somatic mutation calling accuracy on a whole-genome basis12. 117 
   118 

To fulfill this unmet need, we chose a pair of cell lines, HCC1395 (triple-negative breast 119 
cancer) and HCC395BL (B lymphocytes) from the same donor, supplied by the American Type 120 
Culture Collection (ATCC). These two specific cell lines were chosen because they are rich in 121 
testable features (CNVs, SNVs, indels, SVs, and genome rearrangements13), and may have a 122 
potential to serve as a long-term, publicly available, and renewable reference samples with 123 
appropriate consent from donor. Using multiple next generation sequencing (NGS) platforms, 124 
sequencing centers, and various bioinformatics analysis pipelines we profiled these tumor-125 
normal matching cell lines. Thus, we minimized biases that were specific to any platform, 126 
sequencing center, or bioinformatic algorithm, to create a list of high-confidence mutation calls 127 
across the whole genome, here called the “truth set.” A subset of these calls was further 128 
confirmed with orthogonal targeted sequencing and Whole Exome Sequencing (WES). We also 129 
sequenced a series of titrations between HCC1395 and HCC1395BL genomic DNA (gDNA) to 130 
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confirm candidate somatic SNV/indels.  131 
 132 
We defined truth sets containing somatic mutations and germline variants in a paired cell 133 

lines, HCC1395/HCC1395BL, with methods that minimized potential bias from library preparation, 134 
sequencing center, or bioinformatics pipeline. While the “truth set” germline variants in 135 
HCC1395BL can be used for benchmarking germline variant detection, the “truth set” somatic 136 
mutations in HCC1395 can be used for benchmarking cancer mutation detection with VAF as low 137 
as 5%. Many of variants and mutations have clinical implications. In the coding regions, a total of 138 
193 somatic mutations are documented in the COSMIC database and 8 germline variants are 139 
annotated as pathogenic in the ClinVar database. Interestingly, there is a nonsense somatic 140 
mutation in the BRCA2 gene and a nonsense germline variant in the BRAC1 gene. Other hotspot 141 
somatic mutations are also observed in the TP53 and FGFR1 genes. Thus, we believe these paired 142 
cell lines may be highly valuable for those looking for reference samples to benchmark products 143 
in detection of mutations in these four genes.   144 
 145 

Results 146 

 147 
Massive data generated to characterize the reference samples  148 
 149 

To provide reference samples for the community well into the future, a matched pair, 150 
HCC1395 and HCC1395BL was selected for profiling14. Previous studies of this triple negative 151 
breast cancer cell line have revealed the existence of many somatic structural and ploidy 152 
changes13, which are confirmed by our cell karyotype and cytogenetic analysis (Suppl. Fig S1, S2). 153 
Several attempts have been made to identify SNVs and small indels15–17. Given that appropriate 154 
consent from the donor has been obtained for tumor HCC1395 and normal HCC1395BL for the 155 
purposes of genomic research, we sought to characterize this pair of cell lines as publicly available 156 
reference samples for the NGS community. In this manuscript, we focued our efforts on germline 157 
and somatic SNVs and indels. By performing numerous sequencing experiments with multiple 158 
platforms at different sequencing centers, we obtained high-confidence call sets of both somatic 159 
and germline SNVs and indels (Table 1). Larger structural variants and copy number analysis will 160 
be included in a separate manuscript that will discuss these fundings in greater detail. 161 
 162 
Initial Determination of Somatic Mutation Call Set 163 

  164 
High-confidence somatic SNVs and indels were obtained based primarily on 21 pairs of 165 

tumor-normal Whole Genome Sequencing (WGS) replicates from six sequencing centers;  166 
sequencing depth ranged from 50X to 100X (see manuscript DOI: 10.1101/626440). Each of the 167 
21 tumor-normal sequencing replicates was aligned with BWA MEM18, Bowtie219, and 168 
NovoAlign20 to create 63 pairs of tumor-normal Binary Sequence Alignment/Map (BAM) files. Six 169 
mutation callers (MuTect221, SomaticSniper22, VarDict23, MuSE24, Strelka225, and TNscope26) were 170 
applied to discover somatic mutation candidates for each pair of tumor-normal BAM files (Fig. 1). 171 
SomaticSeq27 was then utilized to combine the call sets and classify the candidate mutation calls 172 
into “PASS”, “REJECT”, or “LowQual”. Four confidence levels (HighConf, MedConf, LowConf, and 173 
Unclassified) were determined based on the cross-aligner and cross-sequencing center 174 
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reproducibility of each mutation call. HighConf and MedConf calls were grouped together as the 175 
“truth set” (also known as high-confidence somatic mutations). The call set in its entirety is 176 
referred to as the “super set” which includes low-confidence (LowConf) and likely false positive 177 
(Unclassified) calls. For low-VAF (Variant Allele Frequency) calls, a HiSeq data set with 300× 178 
coverage and a NovaSeq data set with 380× coverage were employed to rescue initial LowConf 179 
and Unclassified calls into the truth set. The details are described in the Methods. 180 

 181 
A breakdown of the four confidence levels is displayed in Fig. 2a. In the truth set, HighConf 182 

calls consist of 94% of the SNVs and 79% of the indels. LowConf calls typically do not have enough 183 
“PASS” classifications across the 63 data sets to be included in the truth set. Variants calls labeled 184 
as Unclassified are not reproducible and likely false positives, with more “REJECT” classifications 185 
than “PASS”. The vast majority of the calls in the super set are either HighConf or Unclassified. In 186 
other words, super set calls tend to be either highly reproducible or not at all reproducible. 187 

 188 
In general, HighConf calls were classified as “PASS” in the vast majority of the data sets, 189 

with no variant read in the matched normal and high mapping quality scores. MedConf calls 190 
tended to be low-VAF (VAF ≲ 0.10) variants. Due to stochastic sampling of low frequency variants, 191 
MedConf calls were not reproduced as highly across different sequencing replicates as HighConf 192 
calls. LowConf calls (not a part of truth set) tended to have VAF near or below our detection limits 193 
(VAF ≲ 0.05). Distinguishing the LowConf calls with sequencing noise is challenging because they 194 
were not reproduced enough to be high-confidence calls (Fig. 2b). 195 

 196 
Independent AmpliSeq confirmation of Call Set 197 

  198 
We randomly selected 450 SNV and 21 indel calls of different confidence levels from the 199 

super set and performed PCR-based AmpliSeq with approximately 2000× depth for tumor and 200 
normal cells on an Illumina MiSeq sequencer. As we treated the AmpliSeq data set as a 201 
confirmatory experiment, simple rules were devised to determine whether a variant call was 202 
deemed positively confirmed, not confirmed, or uninterpretable based on the presence or 203 
absense of somatic mutation evidence in the AmpliSeq data. Overall, positively confirmed calls 204 
had at least 100 variant-supporting reads in the tumor but had no variant read in the normal 205 
sample, despite sequencing depths of 600× or more in the normal. Not confirmed calls either 206 
had no more variant-supporting read than the expected from base call errors, and/or had 207 
VAF≥10% in the normal cells. Uninterpretable calls did not satisfy the criteria for either positive 208 
or no validation, either because they did not have enough read depth (<50) or had fewer than 209 
10 variant-supporting reads. (See Methods for details). 210 

 211 
Both HighConf and MedConf SNV calls had very high coverage in validation and thus had 212 

impressive validation rates (99% and 92%) (Table 2). There were only three HighConf SNV calls 213 
that were not confirmed by AmpliSeq. Two of them had germline signals below the detection 214 
limit of 50× in the WGS, and the third one was likely an actual somatic mutation missed by 215 
AmpliSeq. There were only seven “positively confirmed” Unclassified SNV calls. Four of those 216 
seven were either a part of di-nucleotide change or had deletions within 1 bp of the call. The 217 
other three had low mapping quality scores (MQ), which drove the categorization of 218 
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“Unclassified”. This result suggests that some of the “positively confirmed” Unclassified calls 219 
might be false positives after all, but it also exposes the limitations of our truth set with regard 220 
to complex variants and low mappability regions. LowConf and Unclassified calls (not part of the 221 
truth set) also had higher fractions of uninterpretable calls, which consist of low-coverage 222 
genomic positions or ambiguous variant signals. In addition, there were also 17 HighConf, 2 223 
MedConf, 1 LowConf, and 1 Unclassified indel calls re-sequenced by AmpliSeq. The only not 224 
confirmed HighConf indel call was caused by a germline signal. The lone Unclassified indel call 225 
was not confirmed (we expect Unclassified calls to be not confirmed). For the inquisitive reader, 226 
these discrepant calls (i.e., not confirmed HighConf calls and confirmed Unclassified calls) are 227 
discussed in greater detail in the Supplementary Material. 228 

 229 
The VAF calculated from the truth set correlated highly with the VAF calculated from 230 

AmpliSeq data set, especially for HighConf calls (Fig. 2c). On the other hand, almost all the data 231 
points at the bottom of the graph (i.e., VAF = 0 by AmpliSeq) are Unclassified calls (red). It 232 
suggests that despite high VAFs (from 21 WGS replicates) for some of the calls, they were 233 
categorized correctly as Unclassified (implying likely false positives). In addition, a large number 234 
of uninterpretable Unclassified calls (red X’s) lying at the bottom suggest those were correctly 235 
labeled as Unclassified in addition to the not confirmed ones (open red circles). Moreover, some 236 
of the seven “positively confirmed” Unclassified calls had dubious supporting evidence. Taken 237 
together, these results suggest that the actual true positive rate for the Unclassified calls may be 238 
even lower than the validation rate (11%) we reported here. The indel equivalent is portrayed in 239 
Suppl. Fig S7a. 240 

 241 
Orthogonal Confirmation of Call Set with WES on Ion Torrent 242 

  243 
We have also sequenced the tumor-normal pair with Whole Exome Sequencing (WES) on 244 

the Ion Torrent S5 XL sequencer with the Agilent SureSelect All Exon + UTR v6 hybrid capture. 245 
The sequencing depths for the HCC1395 and HCC1395BL were 34×  and 47× , respectively. 246 
Results from this Ion Torrent sequencing were leveraged to evaluate high-VAF SNV calls (Table 1 247 
and 2). HighConf and MedConf SNV calls had high positive validation rates (99% and 89%). 248 
However, because the Ion Torrent sequencing was performed at much lower depth, nearly 50% 249 
of the calls were deemed uninterpretable (compared with 16% for AmpliSeq, despite having 250 
AmpliSeq custom target enriched for low-confidence calls vs. WES). The trend of higher 251 
uninterpretable fraction with lower confidence level calls was even more pronounced in this data 252 
set because the coverage was too low to confirm or invalidate many low-VAF calls. The validation 253 
rate for MedConf calls (predominantly low-VAF calls) may have suffered due to low coverage. 254 

 255 
The VAF correlation between truth set and Ion Torrent WES (R=0.928) is lower than that 256 

between truth set and AmpliSeq (R=0.958), although the vast majority of the HighConf SNV calls 257 
in Ion Torrent data still stay within the 95% confidence interval area (Fig. 2d). 258 

 259 
There are uninterpretable Unclassified calls (red X’s) at the bottom for high-VAF calls, 260 

which is again highly suggestive that the true positive rate for Unclassified calls may be lower 261 
than the reported validation rate (25%) for Ion Torrent data as well. The indel equivalent is 262 
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included in Suppl. Fig. S7b. 263 
 264 

Independent Confirmation of Call Set with WES on HiSeq 265 
  266 
We used 14 HiSeq WES replicates from six sequencing centers to evaluate the 267 

concordance between these data sets and the WGS data sets employed to construct the truth 268 
set. While the WES data sets were not sequenced from orthogonal platforms, they provide 269 
insights in terms of the reproducibility of our call sets in different library preparations. The scatter 270 
plot between the super set derived VAF and medium HiSeq WES-derived VAF is presented in Fig. 271 
2e. Almost all truth set (HighConf and MedConf calls) variants had consistent VAFs calculated 272 
from both sources. 273 

 274 
Again, simple rules were implemented for validation with the WES data as well (Table 2). 275 

The validation rate for HighConf, MedConf, LowConf, and Unclassified SNV calls by WES were 276 
100%, 98.4%, 93.1%, and 42.4%. These validation rates are higher than other methods because 277 
these WES data were sequenced on the same platform and sequencing centers as those used to 278 
build the truth set. Thus, the truth set variant calls are reproducible in WES, though these data 279 
sets do not eliminate sequencing center or platform specific artifacts that may exist in both WGS 280 
and WES data sets. The indel equivalent is the subject of Suppl. Fig. S7c. 281 
 282 
Validation with tumor content titration series 283 

  284 
To evaluate the effects of tumor purity, we pooled HCC1395 DNA with HCC1395BL DNA 285 

at different ratios to create a range of admixtures representing tumor purity levels of 100%, 75%, 286 
50%, 20%, 10%, 5%, and 0%. For each tumor DNA dilution point, we performed WGS on a HiSeq 287 
4000 with 300 ×  total coverage by combining three repeated runs (manuscript DOI: 288 
10.1101/626440). We plotted the VAF fitting score between the expected values based on the 289 
super set vs. the observed values at each tumor fraction (Fig. 2f). For real somatic mutations, 290 
their observed VAF should scale linearly with tumor fraction in the tumor-normal titration series. 291 
In contrast, the observed VAF for sequencing artifacts or germline variants will not scale in this 292 
fashion. Fig. 2f shows that the fitting scores for HighConf and MedConf calls are much higher than 293 
LowConf and Unclassified calls across all VAF brackets, indicating that the HighConf and MedConf 294 
calls contain far more real somatic mutations than LowConf and Unclassified calls. The formula 295 
[Eq. 2] for the fitting score is described in the Methods. 296 

 297 
Definition and Confirmation of Germline SNVs/Indels in matched normal 298 

  299 
For the 21 WGS sequencing replicates of HCC1395BL (aligned with BWA MEM, Bowtie2, 300 

and NovoAlign to create 63 BAM files) we employed four germline variant callers, i.e., 301 
FreeBayes28, Real Time Genomics (RTG)29, DeepVariant30, and HaplotypeCaller31, to discover 302 
germline variants (SNV/indels). To consolidate all the calls, a generalized linear mixed model 303 
(GLMM) was fit for each set of SNV calls which are sequenced at different centers on various 304 
replicates, aligned by the three aligners, and discovered by the four callers. We estimated the 305 
SNVs/indel call probability (SCP) averaged across four factors (sequencing center, sequencing 306 
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replicate, aligner, and caller), and examined the variance of SCP across these factors. The SNV 307 
candidates considered were called at least four times (out of a maximum of 21x3x4=252 times) 308 
by various combination of the four factors. The frequency histogram of the averaged SCPs 309 
demonstrates a bimodal pattern (Fig. 3a). The vast majority of SNV calls (97%) had SCPs either 310 
below 0.1 (57%) or above 0.9 (40%). Only a small minority of calls (3%) lie between 0.1 and 0.9. 311 
This indicates when SNVs were repeatedly sequenced and called, only a small proportion of them 312 
would be recurrently called as SNVs, and those recurrent calls were in fact highly recurrent. 313 

 314 
Each of our germline SNV or indel calls had annotated SCP. See the Methods and Eq. 2 for 315 

details. Suppl. Table S7 demonstrates that, of the highest-confidence calls (SCP=1, i.e, they were 316 
called everywhere), the validation rates were approximately 99% for SNV and 98% for indels by 317 
Illumina MiSeq, and 98% and 97% for Ion Torrent. Of the 11 SNV with SCP below 0.5, all were not 318 
confirmed by MiSeq. Other calls had intermediate validation rates. 319 

 320 
Figs 3b and 3c display that the vast majority of confirmed germline VAF was around 50% 321 

and 100%. A considerable number of lower-confidence germline SNV calls clustered around 20% 322 
VAF in non-exonic regions (Fig. 3b), with a large proportion of them being uninterpretable during 323 
validation. Scatter plots for indels are qualitatively similar (Suppl. Fig. S13). 324 

 325 
SNV Functional Relevance and TMB Benchmarks 326 

 327 
Among the truth set somatic mutations, 186 COSMIC SNVs and 7 COSMIC indels are in 328 

the coding region. One hotspot somatic mutation of particular biological significance is a TP53 329 
c.128G>A (COSMIC99023, chr17:7675088 C>T, VAF>99%), which causes an amino acid change 330 
p.Arg43His that leads to the inactivation of TP53 tumor suppressive function32. In addition, there 331 
is also a stop gain mutation in BRCA2 c.4777G>T (COSMIC13843, chr13:32339132 G>A), which 332 
causes a nonsense at p.Glu1593*, though it is only a heterozygous variant with VAF of 37.5%. 333 
Furthermore, there is a missense mutation in FGFR1 c.473C>T (COSM1456963, chr8: 38428420 334 
G>A, VAF>99%).  335 
 336 

Of the over 3.5 million high-confidence germline variants discovered in HCC1395BL, 9,016 337 
of them are in the ClinVar database. Most of them were annotated as “benign” or “like benign”; 338 
however, 8 SNVs were annotated as “pathogenic” (Suppl. Table S9). One germline variant likely 339 
to substantially increase the risk of an affected patient to develop breast cancer is a premature 340 
stop gain in BRCA1 (chr17:43057078, c.5251C>A, p.Arg1751*, ClinVar #55480, OMIM Entry 341 
#604370). The lifetime risk of breast cancer for carriers of this variant is 80 to 90%33. The 342 
premature stop codon deactivates BRCA1’s function to repair DNA double-strand breaks. It is one 343 
of the most common germline variants among breast cancer patients. HCC1395 has both BRCA1 344 
and TP53 completely inactivated, one from germline and one acquired somatically. The loss of 345 
two critical tumor suppressor genes likely contributed to tumorigenesis. A full list of COSMIC 346 
somatic mutations and ClinVar germline variants in the coding region is provided in Supplemental 347 
File 2. 348 
  349 

Tumor mutational burden (TMB) is defined as the number of non-synonymous somatic 350 
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variants per unit area of the genome, i.e., typically the number of non-synonymous mutations 351 
per Mbps34. Recent literature increasingly has reported correlations between TMB and response 352 
to anti-PD(L)-1 immunotherapy treatment35. The “gold standard” to measure TMB is to perform 353 
tumor-normal WES and find the total number of non-synonymous mutations (all in the coding 354 
regions). Due to the high cost and time required for WES, researchers are trying to infer TMB 355 
with much smaller and less expensive targeted oncology panels. One way to increase the 356 
statistical power of a much smaller panel is to measure all somatic mutations, including 357 
synonymous mutations, which is expected to correlate highly with frequency of non-synonymous 358 
mutations if we believe most somatic mutations, especially in high-TMB patients, occur more-or-359 
less randomly. We inferred TMB with various commercially available target panels. The 360 
uncertainties of mutation rate (calculated as the 95% binomial confidence interval) inferred by 361 
smaller oncology panels are quite large, so we advise caution when attempting to infer TMB from 362 
targeted oncology panels (Suppl. Table S10).  363 
 364 
Defining Genome Callable Regions 365 

  366 
Accurate variant calling requires an abundance of high-quality reads aligned accurately to 367 

the genomic coordinates in question. False positives are overwhelmingly enriched in genomic 368 
regions where the alignments are challenging, base call qualities are low, and/or reported 369 
coverage is far from the mean or median36. There are parts of the human genome that cannot be 370 
covered by current technologies (Fig. 4a). To obtain the callable regions, we ran GATK CallableLoci 371 
on each of the 63 HCC1395 and HCC1395BL BAM files to identify regions of low coverage (<10), 372 
ultra-high coverage (8× the mean coverage of the sample), difficult to map (MQ<20), poor 373 
reads (Base Quality Score BQ<20), or with N in the reference genome. We then created 374 
consensus callable regions that we deemed callable for our truth set. A limitation of our callable 375 
regions and our truth set is that they were defined and relied on short-read sequencing 376 
technologies (i.e., Illumina sequencers), because currently only high-accuracy short-read 377 
technologies are fit for somatic variant detection due to their low VAF. Variant calls outside the 378 
consensus callable regions were labeled NonCallable in the super set and truth set to warn users 379 
of these potential problems (details in Methods). NonCallable regions consisted of approximately 380 
8% of the genome but contained over 34% of all Unclassified calls and 23% of all LowConf calls in 381 
the super set (Suppl. Table S6).  382 

 383 
The consensus callable regions consist of a total of 2.73 billion bps (Fig. 4b). In comparison 384 

with GiaB NA12878 genome’s more strictly defined high-confidence (HC) regions7, 88% of our 385 
consensus callable regions are in common with GiaB’s HC regions. On the other hand, 98% of 386 
GiaB’s HC regions are a part of our conensus callable regions. Unlike GiaB’s HC which exclude 387 
regions with structural variations as well as regions where variant calls are inconsistent with 388 
pidigree or regions with unexplained pipeline inconsnstencies, when there were disagreements 389 
in a variant call from various sequencing data, we did not exclude the region. Instead, we 390 
attempted to resolve these discrepancies. When there were nearby structural changes, we relied 391 
on machine learning algorithms to resolve these challenging events. As a result, our conensus 392 
callable regions included some difficult genomic regions, such as human leukocyte antigen (HLA) 393 
and olfactory receptor genes which contain high homologus sequences. The confidence (or the 394 
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lack thereof) we hold for each variant call is annotated on a per call basis. We have demonstrated 395 
some benchmarking results with different regions in the Supplementary, section 1.10. 396 

 397 
 398 

Discussion 399 

 400 
Through a community effort, we generated a high confidence somatic mutation call set 401 

with limit of detection (LOD) at 5% VAF (Fig. 2b). To employ as an accuracy benchmark, we 402 
recommend considering the variant calls labeled with both HighConf and MedConf as true 403 
positives. These true positive variants can be used to assess sensitivity, i.e., the fraction of those 404 
variants detected by a pipeline. On the other hand, variant calls labeled as Unclassified plus any 405 
unspecified genomic coordinates are likely false positives. LowConf calls could not be confidently 406 
determined here and should be blacklisted for current accuracy evaluation. LowConf calls had 407 
validation rates around 50%, and often had VAF below our 50× depth detection limit. They 408 
represent opportunities for future work to ascertain their actual somatic status. 409 

 410 
The confidence level of each variant call was determined by the “PASS” classifications 411 

provided by SomaticSeq across different sequencing centers with different aligners (see 412 
Methods). If a variant was not detected by any caller in a data set, it was considered “Missing” in 413 
that data set, which is common for low-VAF calls due to stochastic sampling. For most calls, 414 
however, they either had “PASS” classifications or “REJECT or Missing” classifications, but not 415 
both. Few variant candidates had a large number of “PASS and REJECT” classifications (Suppl. Fig. 416 
S6a). HighConf calls had many “PASS” classifications, very few “REJECT” classifications, and a full 417 
range of VAFs. MedConf calls had fewer “PASS” calls (still high), still very few “REJECT” 418 
classifications, but were mostly low-VAF, which explains the lower number of “PASS” calls. 419 
LowConf calls had even fewer “PASS” calls than MedConf though they overlaped significantly, 420 
and also a low number of “REJECT” classifications. LowConf calls tended to have even lower VAF 421 
than MedConf, around or below our detection limit (Fig. 2b). Only Unclassified calls suffered a 422 
significant number of “REJECT” classifications, and they also displayed a full range of VAF. The 423 
performance of Unclassified calls indicated that SomaticSeq labeled them “REJECT” due to poor 424 
mapping, poor alignment, germline risk, or causes other than lack of variant reads. HighConf and 425 
Unclassified calls are far apart in all of the metrics describedabove. 426 

 427 
Variant re-sequencing with AmpliSeq (Suppl. Fig. S6c) pointed to a high validation rate for 428 

HighConf and MedConf calls. Suppl. Fig. S6c also contains a cluster of Unclassified and LowConf 429 
calls in the middle of the XY plane, representing calls with some conflicts (i.e., large number of 430 
“PASS” and “REJECT” calls).  431 

 432 
Each time a human cell divides, somatic mutations could be introduced by replication 433 

errors. Somatic mutations can occur much more frequently in cancer cells with malfunctioning 434 
DNA repair systems. It is not feasible to detect extremely low-VAF somatic mutations because 435 
they may appear in few tumor cells. Our ”truth set” for somatic mutation was built upon WGS 436 
with 50×-100X coverages, and thus it was designed to detect somatic mutations limited to 5% of 437 
VAF. Variants with low-VAF (≤12%) were cross-referenced with two data sets with depths over 438 
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300× to ascertain their presence. While we do not expect our truth set to be 100% accurate or 439 
100% comprehensive, the AmpliSeq and Ion Torrent data sets demonstrated combined 99% and 440 
91% validation rates for HighConf and MedConf SNV calls, respectively. AmpliSeq also showed a 441 
94% validation rate for HighConf indel calls. VAF of 5% represents the lower detection limit of the 442 
first release of the somatic mutation truth set, even though there are many true mutations with 443 
VAF under that threshold. We recommend that if using this truth set as a benchmark, novel 444 
variant calls (i.e., variants calls not present in our super set) with VAF<5% should be blacklisted 445 
from the accuracy calculations because we cannot confidently determine their status. Due to 446 
losses of chr6p, chr16q, and chrX in HCC1395BL (Suppl. Fig S1, S2), somatic mutations in these 447 
regions were excluded. 448 

 449 
For the first time, tumor-normal paired “reference samples” with a whole-genome 450 

characterized somatic mutation and germline “truth sets” are available to the community. Our 451 
samples, data sets, and the list of known somatic mutations can serve as a public resource for 452 
evaluating NGS platforms and pipelines. The massive and diverse amount of sequencing data 453 
generated from multiple platforms at multiple sequencing centers can help tool developers to 454 
create and validate new algorithms and to build more accurate artificial intelligence (AI) models 455 
for somatic mutation detection. The reference samples and call set presented here can help in 456 
assay development, qualification, validation, and proficiency testing. Such community defined 457 
tumor-normal paired reference samples can be helpful in quality assessment by clinical 458 
laboratories engaged in NGS, data exchange between laboratories, characterization of gene 459 
therapy products, and premarket review of NGS-based products. Furthermore, the methodology 460 
used in this study can be extended to establish truth sets for additional cancer reference samples. 461 
Other reference sample efforts may be able to build on the data sets we established or consider 462 
using these samples as a genomic background for other reference samples. 463 

 464 
 465 

Methods 466 

See Online Methods 467 
 468 
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 602 
 603 

NGS technologies platforms 
# of reads (coverage) 

HCC1395 HCC1395BL 

Initial WGS 

HiSeq 57 billion (2,800X) 57 billion (2,800X) 

NovaSeq 13 billion (650X) 13 billion (650X) 

10X Genomics 20 billion (1,000X) 20 billion (1,000X) 

PacBio  20 million (50X) 20 million (50X)  

  

Validation 

WGS-tumor 
content 

HiSeq 7.6 billion (380X) 7.6 billion (380X) 

WES 
HiSeq 5 billion (12,500X) 5 billion (12,500X) 

Ion Torrent 67 million (34X) 82 million (47X) 

AmpliSeq MiSeq 3.3 million (2000X) 3.3 million (2000X) 

Table 1. Massive data from multiple NGS platforms was obtained to derive and confirm germline 604 
and somatic variants in HCC1395 and HCC1395BL 605 

 606 
Validation 
Platform 

Variant Type Category 
Total 

Number 
Fraction Interpretable 

Validation Rate 
(Interpretable) 

Validation Rate 
(Total) 

AmpliSeq Deep 
Sequencing 

SNV 

HighConf 247 (237/247) 96.0% (234/237) 98.7% 94.7% 

MedConf 40 (37/40) 92.5% (34/37) 91.9% 85.0% 

LowConf 58 (41/58) 70.7% (22/41) 53.7% 37.9% 

Unclassified 105 (62/105) 59.0% (7/62) 11.3% 6.7% 

INDEL 

HighConf 17 (17/17) 100.0% (16/17) 94.1% 94.1% 

MedConf 2 (2/2) 100.0% (2/2) 100.0% 100.0% 

LowConf 1 (0/1) 0.0% (0/0) NA nan% 
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Unclassified 1 (1/1) 100.0% (0/1) 0.0% 0.0% 

Ion Torrent 
WES 

SNV 

HighConf 703 (629/703) 89.5% (623/629) 99.0% 88.6% 

MedConf 43 (27/43) 62.8% (24/27) 88.9% 55.8% 

LowConf 134 (39/134) 29.1% (28/39) 71.8% 20.9% 

Unclassified 802 (155/802) 19.3% (39/155) 25.2% 4.9% 

INDEL 

HighConf 31 (25/31) 80.6% (22/25) 88.0% 71.0% 

MedConf 15 (7/15) 46.7% (6/7) 85.7% 40.0% 

LowConf 8 (0/8) 0.0% (0/0) NA nan% 

Unclassified 36 (8/36) 22.2% (6/8) 75.0% 16.7% 

WES 

SNV 

HighConf 1074 (1068/1074) 99.4% (1068/1068) 100% 99.4% 

MedConf 64 (63/64) 98.4% (62/63) 98.4% 96.9% 

LowConf 197 (144/197) 73.1% (134/144) 93.1% 68.0% 

Unclassified 1218 (436/1218) 35.8% (184/436) 42.4% 15.1% 

INDEL 

HighConf 45 (43/45) 95.6% (43/43) 100% 95.6% 

MedConf 17 (17/17) 100.0% (17/17) 100% 100.0% 

LowConf 13 (10/13) 76.9% (9/10) 90% 69.2% 

Unclassified 54 (19/54) 35.2% (14/19) 73.7% 25.9% 

 607 
Table 2: Validation of SNVs of different confidence levels by three different methods 608 

Figure legends 609 

 610 

Figure 1: Schematic of the bioinformatics pipeline used to define the confidence levels of the 611 
super set and truth set (see Online Methods for detail) 612 

   613 
Figure 2: Initial definition of somatic mutation truth set and subsequent validation. (a) A 614 
breakdown of the four confidence levels in the super set. (b) Histograms of VAF for SNVs (top) 615 
and Indels (bottom) calls. (c) Validation of initial definition of somatic mutation truth set with 616 
AmpliSeq. Solid circles are variant calls that were positively confirmed. Open circles are variants 617 
that were not confirmed. X’s are when validation data were deemed uninterpretable due to low 618 
depth or unclear signal. The dashed lines at the diagonal represent the 95% binomial confidence-619 
interval of observed VAF given the actual VAF, calculated based on 2000× depth for AmpliSeq. 620 
The figure shows very high correlation between VAF estimated from super set data and validation 621 
data for HighConf calls (R=0.958). Many Unclassified data points lie at the bottom, implying that 622 
those calls were not real mutations despite the large number of apparent variant-supporting 623 
reads in the super set data. X-axis: VAF calculated from the super set. Y-axis: VAF calculated from 624 
AmpliSeq data. (d) Validation of the initial definition of the somatic mutation truth set with Ion 625 
Torrent WES. The 95% binomial confidence-interval dash lines were calculated based on 34× 626 
depth for Ion Torrent. R=0.928 for HighConf calls. (e) Validation of initial definition of somatic 627 
mutation truth set with 12 repeats of WES on the HiSeq platform. Y-axis: median VAF calculated 628 
based on 12 HiSeq WES replicates. The 95% binomial confidence-interval dashed lines were 629 
calculated based on 150× depth for HiSeq WES. R=0.992 for HighConf calls. (f) Average tumor 630 
purity fitting scores for the VAF of each SNV across the four different confidence levels vs. the 631 
observed VAF in the tumor-normal titration series. The formula for fitting scores is described in 632 
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Eq. 1 in the Online Methods. 633 

 634 

Figure 3: Initial definition of germline variants and validation. (a) Histogram of SNV call probability 635 
for germline variants identified by four callers from 63 BAM files. (b) VAF scatter plot of germline 636 
SNVs by the truth set and AmpliSeq. R=0.986 for SCP=1 calls. (c) VAF scatter plot of germline SNVs 637 
by the truth set and Ion Torrent WES. R=0.758 for SCP=1 calls. 638 

 639 

Figure 4: Genome coverage and high-confidence regions on reference genome GRCh38. a) 640 
Genome coverage comparison between three technologies. Inner track: PacBio. Middle track: 641 
10X Genomics. Outer track: Illumina. Red line: HCC1395. Green line: HCC1395BL. b) Genome 642 
regions coverage by Illumina short reads in comparison to NA12878. Inner track: NA12878. 643 
Middle track: the callable regions in HCC1395 and HCC1395BL. Outer track: gene density 644 

 645 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprint (which. http://dx.doi.org/10.1101/625624doi: bioRxiv preprint first posted online May. 2, 2019; 

http://dx.doi.org/10.1101/625624


for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprint (which. http://dx.doi.org/10.1101/625624doi: bioRxiv preprint first posted online May. 2, 2019; 

http://dx.doi.org/10.1101/625624


a b c

d e f

VAF

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprint (which. http://dx.doi.org/10.1101/625624doi: bioRxiv preprint first posted online May. 2, 2019; 

http://dx.doi.org/10.1101/625624


a b

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprint (which. http://dx.doi.org/10.1101/625624doi: bioRxiv preprint first posted online May. 2, 2019; 

http://dx.doi.org/10.1101/625624


a

b c

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprint (which. http://dx.doi.org/10.1101/625624doi: bioRxiv preprint first posted online May. 2, 2019; 

http://dx.doi.org/10.1101/625624

