200 research outputs found

    Road salt emissions: A comparison of measurements and modelling using the NORTRIP road dust emission model

    Get PDF
    AbstractDe-icing of road surfaces is necessary in many countries during winter to improve vehicle traction. Large amounts of salt, most often sodium chloride, are applied every year. Most of this salt is removed through drainage or traffic spray processes but a certain amount may be suspended, after drying of the road surface, into the air and will contribute to the concentration of particulate matter. Though some measurements of salt concentrations are available near roads, the link between road maintenance salting activities and observed concentrations of salt in ambient air is yet to be quantified. In this study the NORTRIP road dust emission model, which estimates the emissions of both dust and salt from the road surface, is applied at five sites in four Nordic countries for ten separate winter periods where daily mean ambient air measurements of salt concentrations are available. The model is capable of reproducing many of the salt emission episodes, both in time and intensity, but also fails on other occasions. The observed mean concentration of salt in PM10, over all ten datasets, is 4.2 μg/m3 and the modelled mean is 2.8 μg/m3, giving a fractional bias of −0.38. The RMSE of the mean concentrations, over all 10 datasets, is 2.9 μg/m3 with an average R2 of 0.28. The mean concentration of salt is similar to the mean exhaust contribution during the winter periods of 2.6 μg/m3. The contribution of salt to the kerbside winter mean PM10 concentration is estimated to increase by 4.1 ± 3.4 μg/m3 for every kg/m2 of salt applied on the road surface during the winter season. Additional sensitivity studies showed that the accurate logging of salt applications is a prerequisite for predicting salt emissions, as well as good quality data on precipitation. It also highlights the need for more simultaneous measurements of salt loading together with ambient air concentrations to help improve model parameterisations of salt and moisture removal processes

    Geoscience of the built environment: pollutants and materials surfaces

    Get PDF
    An overview of issues with environmental relevance that arise from the interaction between pollutants and surfaces of the built environment is presented in this paper. Two broad perspectives are considered: decay of materials and recording of pollution characteristics. In relation to the former, we consider the possible implications on human activities restrictions, materials and morphological options, consumption of resources and release of pollutants resulting from the alteration of materials, conservation and restoration procedures. In terms of pollution recording, the interest of the stony materials as passive monitors of pollution, the question of heterogeneous conditions on buildings and the interest of qualitative and quantitative studies are highlighted. The importance of longitudinal studies on new and cleaned surfaces is considered, both for the understanding of materials decay and for the assessment of pollution conditions. The use of tracers to record the characteristics of pollution sources, interaction with materials and pathways of pollutants is also discussed. Finally, some recommendations are presented, based on the issues discussed on this paper that might be relevant for environmental management programs, including environmental education.Fundação para a Ciência e Tecnologia (Portugal) (programa plurianual das unidades de investigação; PEst-OE/CTE/UI0697/2011)Fundação das Universidades PortuguesaMinisterio de Ciencia e Innovación - Acción Integrada PT2009-007

    Multi-pollutant exposure profiles associated with term low birth weight in Los Angeles County

    Get PDF
    Research indicates that multiple outdoor air pollutants and adverse neighborhood conditions are spatially correlated. Yet health risks associated with concurrent exposure to air pollution mixtures and clustered neighborhood factors remain underexplored. Statistical models to assess the health effects from pollutant mixtures remain limited, due to problems of collinearity between pollutants and area-level covariates, and increases in covariate dimensionality. Here we identify pollutant exposure profiles and neighborhood contextual profiles within Los Angeles (LA) County. We then relate these profiles with term low birth weight (TLBW). We used land use regression to estimate NO2, NO, and PM2.5 concentrations averaged over census block groups to generate pollutant exposure profile clusters and census block group-level contextual profile clusters, using a Bayesian profile regression method. Pollutant profile cluster risk estimation was implemented using a multilevel hierarchical model, adjusting for individual-level covariates, contextual profile cluster random effects, and modeling of spatially structured and unstructured residual error. Our analysis found 13 clusters of pollutant exposure profiles. Correlations between study pollutants varied widely across the 13 pollutant clusters. Pollutant clusters with elevated NO2, NO, and PM2.5 concentrations exhibited increased log odds of TLBW, and those with low PM2.5, NO2, and NO concentrations showed lower log odds of TLBW. The spatial patterning of pollutant cluster effects on TLBW, combined with between-pollutant correlations within pollutant clusters, imply that traffic-related primary pollutants influence pollutant cluster TLBW risks. Furthermore, contextual clusters with the greatest log odds of TLBW had more adverse neighborhood socioeconomic, demographic, and housing conditions. Our data indicate that, while the spatial patterning of high-risk multiple pollutant clusters largely overlaps with adverse contextual neighborhood cluster, both contribute to TLBW while controlling for the other.Health Effects Institute (HEI), an organization jointly funded by the United States Environmental Protection Agency (EPA) (Assistance Award No. R-82811201

    Health and climate related ecosystem services provided by street trees in the urban environment

    Full text link

    Land cover and air pollution are associated with asthma hospitalisations:A cross-sectional study

    Get PDF
    BACKGROUND: There is increasing policy interest in the potential for vegetation in urban areas to mitigate harmful effects of air pollution on respiratory health. We aimed to quantify relationships between tree and green space density and asthma-related hospitalisations, and explore how these varied with exposure to background air pollution concentrations. METHODS: Population standardised asthma hospitalisation rates (1997-2012) for 26,455 urban residential areas of England were merged with area-level data on vegetation and background air pollutant concentrations. We fitted negative binomial regression models using maximum likelihood estimation to obtain estimates of asthma-vegetation relationships at different levels of pollutant exposure. RESULTS: Green space and gardens were associated with reductions in asthma hospitalisation when pollutant exposures were lower but had no significant association when pollutant exposures were higher. In contrast, tree density was associated with reduced asthma hospitalisation when pollutant exposures were higher but had no significant association when pollutant exposures were lower. CONCLUSIONS: We found differential effects of natural environments at high and low background pollutant concentrations. These findings can provide evidence for urban planning decisions which aim to leverage health co-benefits from environmental improvements

    Assessing the Potential of Regulating Ecosystem Services as Nature-Based Solutions in Urban Areas

    Get PDF
    Mounting research assesses the provision of regulating ecosystem services by green infrastructure in urban areas, but the extent to which these services can offer effective nature-based solutions for addressing urban climate change-related challenges is rarely considered. In this chapter, we synthesize knowledge from assessments of urban green infrastructure carried out in Europe and beyond to evaluate the potential contribution of regulating ecosystem services to offset carbon emissions, reduce heat stress and abate air pollution at the metropolitan, city and site scales. Results from this review indicate that the potential of regulating ecosystem services provided by urban green infrastructure to counteract these three climate change-related pressures is often limited and/or uncertain, especially at the city and metropolitan levels. However, their contribution can have a substantially higher impact at site scales such as in street canyons and around green spaces. We note that if regulating ecosystem services are to offer effective nature-based solutions in urban areas, it is critically important that green infrastructure policies target the relevant implementation scale. This calls for a coordination between authorities dealing with urban and environmental policy and for the harmonization of planning and management instruments in a multilevel governance approach. Regulating ecosystem services • Urban green infrastructure • Global climate regulation • Local climate regulation • Air quality regulation • Multi-scale assessmentpublishedVersio

    Nanoparticle emissions from 11 non-vehicle exhaust sources – A review

    Full text link
    corecore