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Research indicates that multiple outdoor air pollutants and adverse neighborhood conditions are spatially corre-
lated. Yet health risks associatedwith concurrent exposure to air pollutionmixtures and clustered neighborhood
factors remain underexplored. Statistical models to assess the health effects from pollutant mixtures remain lim-
ited, due to problems of collinearity between pollutants and area-level covariates, and increases in covariate di-
mensionality. Here we identify pollutant exposure profiles and neighborhood contextual profiles within Los
Angeles (LA) County.We then relate these profiles with term low birthweight (TLBW).Weused land use regres-
sion to estimate NO2, NO, and PM2.5 concentrations averaged over census block groups to generate pollutant ex-
posure profile clusters and census block group-level contextual profile clusters, using a Bayesian profile
regression method. Pollutant profile cluster risk estimation was implemented using a multilevel hierarchical
model, adjusting for individual-level covariates, contextual profile cluster random effects, and modeling of spa-
tially structured and unstructured residual error. Our analysis found 13 clusters of pollutant exposure profiles.
Correlations between study pollutants varied widely across the 13 pollutant clusters. Pollutant clusters with el-
evated NO2, NO, and PM2.5 concentrations exhibited increased log odds of TLBW, and those with low PM2.5,
NO2, and NO concentrations showed lower log odds of TLBW. The spatial patterning of pollutant cluster effects
on TLBW, combinedwith between-pollutant correlationswithin pollutant clusters, imply that traffic-related pri-
mary pollutants influence pollutant cluster TLBW risks. Furthermore, contextual clusters with the greatest log
odds of TLBW had more adverse neighborhood socioeconomic, demographic, and housing conditions. Our data
indicate that, while the spatial patterning of high-risk multiple pollutant clusters largely overlaps with adverse
contextual neighborhood cluster, both contribute to TLBW while controlling for the other.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Evidence has been accumulating that birth outcomes may be particu-
larly sensitive to air pollution mixtures, specifically components related
to traffic sources of airborne particulate matter (PM) (Bell et al., 2010;
Laurent et al., 2014; Wilhelm et al., 2011a). While earlier research has
linked increased prevalence of term low birth weight (TLBW) with vari-
ous outdoor air pollutants including NO2, NO, and PM2.5 (Geer, 2014;
Ritz andWilhelm, 2008),most evidence relied on single pollutantmodel-
ing of exposures (Ritz and Wilhelm, 2008). A number of studies (Brauer
and Tamburic, 2009; Ghosh et al., 2012; Gouveia et al., 2004; Laurent
et al., 2014; Le et al., 2012; Morello-Frosch et al., 2010; Wilhelm et al.,
2011a, 2011b) investigated exposures to multiple pollutants in relation
. This is an open access article under
to birth outcomes; however, these studies are limited in assessing
which combination of pollutants are most hazardous or how
multipollutant health effects vary spatially. Despite there being no single
exposure-measure-framework to holistically address the health effects of
multipollutant exposures (Oakes et al., 2014), investigating health effects
of profiles of multiple pollutants using clustering techniques has recently
shown promise (Gu et al., 2012; Molitor et al., 2014a; Papathomas et al.,
2010; Pirani et al., 2015; Qian et al., 2004; Zanobetti et al., 2014).

1.1. Multipollutant exposures

Considerable intra-urban spatial variations in outdoor air pollution
concentrations exists, and recent research indicates that between-
pollutant correlations and PM2.5 composition exhibit highly localized
spatial patterns to create complex mixtures (Austin et al., 2013; Austin
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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et al., 2012; Bell et al., 2011; Geer, 2014; Hasheminassab et al., 2014;
Houston et al., 2014; Janhäll et al., 2012; Laurent et al., 2014; Levy
et al., 2013a;Molitor et al., 2011;Monn, 2001; Tsai et al., 2015). Spatially
correlated air pollution mixtures correspond to localized sources, such
as transportation-related emissions (Laurent et al., 2014), local industri-
al activities (Morello-Frosch et al., 2002; Zhu et al., 2011), or small-area
commercial landuses (Morello-Frosch et al., 2002;Morello-Frosch et al.,
2001). Factors that combine to determine exposure to spatially correlat-
ed pollutants from a particular source are complex and diverse,
e.g., traffic-source driven exposures are influenced by traffic volumes
and congestion, proximity to traffic, the types of fuel and engines, oper-
ating conditions of emitting sources, types of emitting sources, back-
ground air pollution levels, local meteorology, chemical reactions
between pollutants, and local topographies (Austin et al., 2012;
Boehmer et al., 2013; Cho et al., 2009; Greco et al., 2007; Hu et al.,
2012; Janhäll et al., 2012; U.S. EPA, 2008; Zhang and Batterman, 2013).

Correlations across different pollutants hinder our ability to assess
their individual or combined health effects, since estimates of effects
may become unstablewhen adjusting for co-pollutants using regression
techniques (Mauderly et al., 2010). Correlations between PM2.5 concen-
trations and nitrogen oxides (NO2 and NO [NOx]) are typically weak to
moderate (Ghosh et al., 2013; Laurent et al., 2014; Levy et al., 2013).
However, such correlations can vary spatially (Levy et al., 2013; Tsai
et al., 2015) based upon whether the particulates represent primary
PM2.5 (particles emitted directly from the source, e.g. fuel combustion
(Fine et al., 2008)) or secondary PM2.5 (particles formed in the atmo-
sphere (Fine et al., 2008)). Therefore, since some PM2.5 components
represent “fresh” traffic emissions (i.e. ultrafine PM and black carbon),
they can exhibit high correlations with outdoor concentrations of NOx,
as studies of urban air pollution from Asia, Europe, and North America
demonstrate (Brauer et al., 2011; Dionisio et al., 2014; Janhäll et al.,
2012; Levy et al., 2013; Tsai et al., 2015; Wang et al., 2014). Further-
more, the spatial variation in between-pollutant correlations also sug-
gests a strong potential for a unique spatial pattern of multipollutant-
related health risks, yet research on this question is lacking.
1.2. Contextual factors

Neighborhood-level “contextual” factors may also affect risk of birth
outcomes (English et al., 2003; Morello-Frosch and Shenassa, 2006).
Contextual effects are non-chemical stressors (Lewis et al., 2011) that
arise when grouped neighborhood-level factors – such as socio-
demographic or built environment (e.g. housing as one component of
the built environment) factors – influence health outcomes across pop-
ulations (Sheppard et al., 2012). Data from Southern California indicates
that spatially clustered socioeconomic deprivation and racial segrega-
tion correlatewith air pollution exposures, including pollutantmixtures
(Molitor et al., 2011; Morello-Frosch et al., 2011; Morello-Frosch et al.,
2002; Morello-Frosch and Shenassa, 2006; Su et al., 2012). In addition,
compared to newer homes, older homes are shown to have higher in-
door air pollution levels within LA County (Spengler et al., 1994).
Older housing stockmay further correlatewith higher poverty, residen-
tial racial segregation patterns, substandard housing conditions, and a
lack of compliance with building or sanitary codes (Shennassa et al,
2004).Moreover, research from LA County indicates that housing venti-
lation conditions may be associated with TLBW (Ghosh et al., 2013).

Air pollution andbirth outcomes research studies, however, general-
ly do not account for spatial clustering of multiple neighborhood-level
vulnerabilities (i.e. race-ethnicity, poverty, and adverse housing condi-
tions) related to exposure. This may confound multipollutant
exposure-response relationships (Geer, 2014; Morello-Frosch et al.,
2011; Morello-Frosch and Shenassa, 2006; Ponce, 2005; Ritz and
Wilhelm, 2008). Given this gap in air pollution and health effects litera-
ture, our study includes contextual factors, as clustering covariates, to
better control for highly correlated contextual factors known to
influence differential exposures across socio-demographic groups and
risk of TLBW.

1.3. Study objectives

The primary objectives of our study are to first identify profiles of ex-
posure to multiple different air pollutants (pollutant profiles) for preg-
nant women within LA County, and secondly to assess whether and
which pollutant profiles relate with elevated prevalence of TLBW. Addi-
tionally, our approach identifies pollutant profiles most likely related to
primary traffic emissions, based on examination of the spatial pattern-
ing of pollutant exposure profiles and well established pollutant source
emissions relationships.

2. Methods

2.1. Study population and birth outcomes

Electronic birth certificates from the California Department of Public
Health provided the data on baby's birthweight and individual-level co-
variates for LA County births during the years 2000–2006. Individual
data from the birth records included maternal characteristics (age,
race and ethnicity, education, total number of previous maternal births,
and residential address) and information on the infant and birth (date of
birth, abnormalities, birth season, gestational age at birth [as deter-
mined by self-report of last menstruation], birth weight and baby's
sex). The datasetwas restricted to singleton birthswithout apparent ab-
normalities, while births with extreme gestational days (b140 days or
N320 days) and births with weight b500 g or N5000 g were excluded
from the analysis. Such extreme values are likely attributable to record-
ing errors. These data restrictions provided a sample size of 899,554. Fi-
nally, we defined TLBW as full-term (≥259 gestation days) infants with
a birthweight b 2500 g,which further restricted the study population to
term births, to provide a final sample size of 804,726 to assess the rela-
tionship between TLBW with neighborhood-level pollutant profile ex-
posures. Human subjects research was approved through the
University of California, Los Angeles' Office of the Human Subjects Pro-
tection Program, the California Committee for the Protection of
Human Subjects, and the University of Southern California's Office for
the Protection of Research Subjects. Geocoding of residential addresses
are explained elsewhere (see Goldberg et al., 2008).

2.2. Exposure estimation

Two separate land use regression (LUR) models estimated
individual-level exposures for PM2.5, NO, and NO2 (Beckerman et al.,
2013a, 2013b; Su et al., 2009). LUR estimates were temporally adjusted
to derive the entire pregnancy average exposures. LUR exposure predic-
tions for NO and NO2 were based on traffic volumes, truck routes, road
networks, land use data, satellite-derived vegetation greenness and
soil brightness, truck route slope gradients, and air monitoring data.
NO2 andNOdatawere collected during 2-week timeperiods in Summer
of 2006 and Winter of 2007, from over 200 monitoring locations (Su
et al., 2009). The PM2.5 exposure estimates came from a LUR model
that utilized long-term governmental monitoring data of PM2.5 mea-
surements collected between 1998 through 2002 (Beckerman et al.,
2013b). A machine learning deletion/substitution technique
(Beckerman et al., 2013a) assessed as many as 70 covariates to develop
thefinal PM2.5 LURmodel, such as land use data (i.e. agricultural, barren,
all developed land, high-density development, green space, water, and
wetland), long-term traffic counts (1990–2001), and road networks
from the year 2000 (Beckerman et al., 2013a; Jerrett et al., 2013).

We adjusted LUR exposure estimates temporally to derive
“seasonalized” values that correspond to each pregnancy time span.
For temporal adjustments, we first used daily air monitoring data
from LA County between the years 1999–2006, for all monitors to
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calculate an overall daily average for PM2.5, NO2, and NOx. Pregnancy
time period averages were then calculated for each pregnancy from
these daily averages. As NO was not directly measured by these moni-
tors, we subtracted theNO2 pregnancy average from theNOx pregnancy
average to derive NO pregnancy time period estimates. Temporal ad-
justments of the LUR estimates for NO2 and NO were achieved using
the following equation, which is similar in approach to our earlier
work (see (Ghosh et al., 2012)):

NO2 LUR Pregnancy Average ¼ NO2 LUR� monitor station pregnancy average NO2
2006 NO2 average for all monitor stations

NO LUR Pregnancy Average ¼ NO LUR� monitoring station pregnancy average NO
2006 NO average for all monitoring stations :

Since the PM2.5 LUR estimates represent long-term estimates span-
ning the study time period and some pregnancies began in 1999, we
performed seasonal adjustments with the following equation:

PM2:5 LUR Pregnancy Average ¼ PM2:5LUR� monitor station pregnancy average PM2:5

PM2:5 average for all monitoring stations 1999–2006ð Þ :

Such temporal adjustment via region-widemonitoring station ratios
has been validated for the purposes of estimating pregnancy exposures
in birth outcomes studies (Ross et al., 2013).

All of the available data from the temporally adjusted LURmodel es-
timates (N= 899,554)were then averaged over census block groups to
develop air pollution exposure profiles at the census block group level.
Data aggregation at the census block group-level for individual esti-
mates was performed since we were interested in assessing between
neighborhood multipollutant exposure-related TLBW risks. Moreover,
implementation of the Bayesian profile regression using individual-
level estimates with a dataset as large as ours is not feasible given the
current computational limitations of the R PReMiuM package (de-
scribed below).

2.3. Bayesian profile regression

Wedeveloped theprofile clusters using a non-parametric dimension
reduction technique known as Bayesian profile regression, based on
commonly used Dirichlet process mixture model methods (Neal,
2000). Profile regression is set in a Bayesian framework using Markov
chain Monte Carlo (MCMC) methods. Bayesian profile regression uses
covariate values to observe joint patterns within the covariate data.
This approach was used in recent studies (Hastie et al., 2013; Molitor
et al., 2014a; Molitor et al., 2011, Molitor et al., 2010; Papathomas
et al., 2012), including environmental epidemiology studies
(Papathomas et al., 2010; Pirani et al., 2015; Vrijheid et al., 2014). This
clustering approach is advantageous because it reduces the dimension-
ality of the covariate data and allows for examining health risks as they
relate to joint patterns of exposure, while avoiding the pitfalls of expo-
sure variables that are highly collinear. This approach is also quite flex-
ible because it does not rely on setting a total number of allowable
clusters, as seen with k-means clustering procedures (Austin et al.,
2013; Austin et al., 2012; Gu et al., 2012). We implemented the profile
regression using the PReMiuM package in R (Liverani et al., 2015).
Since our interest is in obtaining clustering that best fits the data for
sub-regions within the LA County area, we utilized a feature of the PRe-
MiuM package that excludes the outcome variable from the profile re-
gression model (Liverani et al., 2015). We relied on “hard clustering”
(Fang et al., 2011) in the sense that a census block group's final alloca-
tion is to a single cluster. Cluster allocation is based on the “best” cluster-
ing derived from the Bayesian averaging process, rather than
probabilistic allocation to several different clusters simultaneously (as
in fuzzy [or soft] clustering). Briefly, for each census block group, j, a co-
variate profile is defined as, xj=(x2, x2,…, xp), where every covariate, xp,
p=1,…, P, within each profile signifies a level of exposure for covariate
p in region j. The primary model for cluster profiles was defined by a
multivariate normal mixture model (Jain and Neal, 2004) that further
integrates a Dirichlet process prior into the mixing distribution. For
greater details on this Bayesian profile regression approach, the reader
is referred to other recent works (Hastie et al., 2013; Liverani et al.,
2015; Molitor et al., 2014a; Molitor et al., 2011, Molitor et al., 2010;
Papathomas et al., 2012; Papathomas et al., 2010).

We performed two separate profile regressions to develop a set of
two unique profile clusters to fit in the TLBW risk model. The first clus-
tering procedure developed pollutant-only profile clusters. The second
clustering procedure developed contextual-only profile clusters. The
co-pollutants for our pollutant-only profile regression included average
census block group-level concentrations for NO2, NO, and PM2.5. Fur-
thermore, since our LUR estimates were seasonalized and thus provide
temporally resolved estimates of exposure for each pregnancy, we also
performed pollutant profile regression across different birth seasons
and across different birth years.We present the results of these seasonal
and yearly pollutant clusters in the Supplemental materials (Figs. S1–
S4), however, in this paper we focus on the overall pollutant profiles
as described above since the spatial patterning and between-pollutant
correlations were very stable across each of these different seasonal
and yearly pollutant profile cluster analyses.

The contextual-only exposure profile regression utilized year
2000 U.S. census data and included census block group-level race-
ethnicity (percent non-Hispanic White, percent non-Hispanic Black,
and percent Hispanic), median household income, and percent of
homes built prior to year 1950. Even though our multivariate risk
model (described below) adjusts for individual-level maternal race-
ethnicity, we included census block group-level racial/ethnic composi-
tion as a clustering contextual covariate under the rationale that area-
level racial/ethnic composition may act as a contextual risk factor for
TLBW separate from an individual's race-ethnicity (Debbink and
Bader, 2011). Similarly, while ourmultivariatemodel adjusts formater-
nal education as a marker of individual-level SES, we included census
block group levelmedianhousehold incomeas a contextual SES variable
in the clusteringprocedure, under the same rationale that area-level SES
acts as a contextual risk factor for TLBW independent of individual-level
SES (Grady, 2011; Grady, 2006). We included the percentage of homes
built before 1950 since disparities in housing quality and other housing
characteristics correlated with older housing may act as an important
contextual risk factor in TLBW risk (Ghosh et al., 2013; Grady, 2011). In-
dividual mothers were then assigned to both a pollutant cluster and a
contextual cluster as determined by which census block group the
mother resided in according to their address at time of delivery.

2.4. Multilevel risk model

Ourmultilevel logistic regressionmodelwas set in a Bayesian frame-
work with pollutant profile clusters and contextual profile clusters used
as separate random effects variables in the regression equation, along
with spatially structured and unstructured independent error terms fit
as additional random effects. Themodel specification is detailed in turn:

logit pið Þ ¼ α þ Vη
0 þ γpollutant�cluster

k i½ � þ γcontextual�cluster
c i½ � þ Sj þ ϵ j ð1Þ

where pi denotes the logit of TLBW (yi = 1) for individual i, Vη'-

represents the individual-level covariate fixed effects, γk
pollutant-

cluster~N(0,σpollutant-cluster
2 ) ,k=1,… ,13 represents the random effects

for the pollutant-clusters and γc
contextual-cluster~N(0,σcontextual-cluster

2 ) , -
c=1,… ,14 represents the contextual cluster random effects. Follow-
ing Gelman and Hill (2006), we use the notation k[i] to denote the
pollutant profile group k to which individual i belongs and c[i] to denote
the contextual profile group c to which individual i belongs. Thus, each
pollutant random error term represents the variation in TLBW preva-
lence in the pollutant profile clusters and likewise each contextual ran-
dom error term represents the variation in TLBW in the contextual
clusters. In other words, the cluster random effect can be interpreted
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asmeasuring the change in baseline log odds of TLBW for individual i in
cluster k, when all other covariates in the model are set to zero (see
Molitor et al., 2010).

Regarding the spatial and independent residual error terms, here Sj
and ϵj denote spatial and independent residual error terms, respectively,
with the restriction∑

j
S j ¼ 0 imposed for indefinability reasons. While

the independent error term is defined in the standard way as
ϵj∼N(0,σ2), the spatial error term is defined as,

Sjjk≠ j � Nð
∑
k≠ j

wjkSk

∑
k≠ j

wjk
; τ2

∑
k≠ j

wjk
Þ,

where the weights wj ,k are elements of the zero-one neighborhood ad-
jacencymatrix defined to be equal to onewhen census tracts i ,k are ad-
jacent and zero otherwise. This approach implements the Besag-York-
Molly (BYM) model (Besag et al., 1991) and has been successfully
employed in a variety of exposure/health association studies (Molitor
et al., 2007). Given the large number of records in the dataset, we
“pre-clustered” exposure profiles as described in our clustering section
and then used the R-INLA (integrated nested Laplace approximations)
package to implement the Bayesian multilevel random effects model
described in equation (1) above. R-INLA estimates Bayesian posterior
marginal distributions (Rue et al., 2014; Rue and Martino, n.d.) without
relying on computationally intensive Markov chain Monte Carlo tech-
niques (Gilks et al., 1998).

2.5. Assessing uncertainty in pollutant random effects

As our analysis is in a Bayesian framework, with random effects
terms for each pollutant cluster and for each contextual cluster, we
assessed the uncertaintywith respect to the randomeffect for each clus-
ter on the baseline log odds of TLBW. For instance, we calculated the
posterior probability that a specific profile cluster's posterior distribu-
tion of baseline log odds for TLBW ([logit[Pr(yi=1)]=θk]) is above
the overall baseline log odds for TLBW (θ) (Papathomas et al., 2010).
Said another way, for each cluster we calculate the probability as
P(θkN0), with probability values close to 1 indicative of a high probabil-
ity for a baseline log odds above zero for each cluster (evidence for ad-
verse effect). Conversely, a posterior probability close to zero is
indicative of a low probability for a baseline log odds above zero for
each cluster (evidence for no adverse effect). The posterior probabilities
for each pollutant cluster and for each contextual cluster were then
mapped in ArcGIS V.10.1 (Redlands, CA) to investigate the spatial distri-
bution of these clusters effects on the log odds of TLBW. These kinds of
probability effect maps are commonly used in Bayesian modeling of
spatial effects of exposure (Bivand et al., 2013; Coker et al., 2015).

2.6. Covariates

Individual-level covariates adjusted for were maternal factors in-
cluding age at delivery (b20 years, 20–24 years, 25–29 years, 30–
34 years, ≥35 years), race-ethnicity (non-Hispanic White, non-
Hispanic Black, Hispanic, Asian, and Other race), highest education
level attained (b 9 years, 9–12 years, 13–15 years, and ≥16 years), par-
ity, along with infant factors such as gestational days, gestational days
squared, and infant sex (male/female).

2.7. Characterization of pollutant clusters

In order to inferwhich clusters aremost likely affected by near high-
way traffic emission (or primary emissions) we characterized each pol-
lutant cluster in terms of their respective pollutant ratios, between-
pollutant correlations, and maternal residential distance to major
highways. Such metrics have shown to be helpful in terms of assessing
sources of emissions related to near road vehicle traffic (Austin et al.,
2012; Janhäll et al., 2012; Laurent et al., 2014; Levy et al., 2013). Also,
since both NO andNO2 could be highly correlatedwith PM2.5 under cer-
tain emissions scenarios, we normalized NO and NO2 concentration to
PM2.5 as described in Austin et al. (2012). This normalization helps to in-
dicate which pollutant clusters have elevated NO and NO2 concentra-
tions, after accounting for their overall relationship with PM2.5. We
obtained the normalized concentrations by calculating the cluster-
specific ratio of NO or NO2 to PM2.5 and dividing by the overall study
area ratio of NO or NO2 to PM2.5.

3. Results

We observed an overall TLBW prevalence of 2.07% (95% CI: 2.04–
2.11, n=16,694) for the study population. Our data also showed spatial
autocorrelation at the census tract level with respect to prevalence of
TLBW (Fig. S5, Supplemental materials). Average census block group
concentrations of NO2, NO, and PM2.5 were 22.49 ppb (interquartile
range [IQR]: 19.68, 25.30 ppb), 21.84 ppb (IQR: 16.05, 26.11), and
16.94 μg/m3 (IQR: 15.96, 18.18), respectively (Table 1).

3.1. Pollutant and contextual variable correlations

As indicated in Fig. 1, there is evidence of strong correlation
(Pearson's r) for between pollutant concentrations, most notably for
NO2 and NO. The positive correlations between PM2.5 and NO2 and be-
tween PM2.5 and NO are considerably weaker (Fig. 1). However, we
did find that the between-pollutant correlations for PM2.5 and the NOx

species varied widely across LA County (Fig. S7, Supplemental mate-
rials). Correlations between our contextual variables and the study pol-
lutants ranged from onlyweak tomoderate (range:−0.53 to 0.54) (Fig.
1). Correlations between the contextual variables on the other hand
were stronger (range:−0.66 to 0.64).

3.1.1. Pollutant clusters
The profile regression identified 13 pollutant profile clusters (P1–

P13) from the 6280 census block groups from which we had complete
air pollution data. Summary statistics for each pollutant overall, and
stratified by cluster, are in Table 1. These data summaries are color
coded to help indicate which exposure profile clusters have either ele-
vated (red), typical (green), or lowered (blue) pollutant concentrations
compared to the overall concentrations. According to pollutant summa-
ries in Table 1, the elevatedNO2 clusters are pollutant clusters P3, P7, P9,
P10, and P13. The elevated NO pollutant clusters are the same as for
NO2, plus P12. The elevated PM2.5 pollutant clusters are clusters P6,
P7, P9, P10and P13. Four of the pollutant clusters show elevated levels
for all pollutants, including P7, P9, P10, and P13.Whereas pollutant pro-
file clusters P1, P2, P4, P5, and P11 show low levels for all pollutants.We
mapped the spatial distributions of pollutant clusters in Fig. 2. Clusters
with high concentrations for all pollutants are mostly within the down-
town/metro area of LA and South-Central LA (clusters P7, P9, and P10),
and a relatively fewer number of census block groups in the eastern sec-
tion of the county (P13).

Between pollutant correlations for each pollutant cluster are indicat-
ed in Table 2 (see Supplemental materials for the spatial pattern of pol-
lutant correlations). In Fig. 3 we present the distributions of NO/NO2

ratios and the normalized NO2 and normalized NO values for each pol-
lutant cluster, while themedian residential distances tomajor highways
throughout the county are shown in Fig. 4. According to these pollutant
and near-highway exposuremetrics, mothers residing in pollutant clus-
ters P9 and P10 are most likely exposed to higher levels of primary traf-
fic pollution since these two clusters are characterized by high NO/NO2

ratios and high normalized NO and NO2 concentration. Additionally, P9
and P10 are characterized by low correlations between NO and NO2

(suggestive of near roadway emissions) and elevated PM2.5



Table 1
Summary statistics of mean census block group-level pollutant concentrations for pollut-
ant exposure profile clusters.

Pollutant cluster (number 
of census block groups) PM2.5 µg/m3 (IQR) NO2 ppb (IQR) NO ppb (IQR)

P1 (329) 13.20 (11.95, 14.55) 18.19 (15.58, 20.79) 10.99 (9.30, 12.87)

P2 (242) 12.83 (12.03, 13.69) 21.34 (19.28, 23.2) 19.17 (16.07, 21.60)

P3 (633) 14.93 (14.58, 15.30) 28.14 (26.12, 29.84) 29.10 (23.46, 33.90)

P4 (1399) 16.91 (16.41, 17.36) 23.87 (21.87, 26.17) 21.08 (17.35, 24.53)

P5 (624) 15.96 (15.27, 16.52) 21.94 (20.61, 23.33) 23.50 (21.84, 25.21)

P6 (500) 18.87 (18.31, 19.41) 17.84 (16.12, 19.66) 15.46 (13.24, 18.20)

P7 (1715) 18.16 (17.79, 18.50) 25.63 (24.00, 27.31) 29.36 (26.11, 32.57)

P8 (96) 16.90 (16.40, 17.18) 16.46 (13.23, 18.78) 22.34 (16.29, 30.91)

P9 (513) 17.66 (17.12, 18.15) 31.74 (30.14, 33.27) 42.31 (37.57, 46.37)

P10 (52) 17.23 (16.84, 17.67) 42.51 (39.91, 44.29) 74.08 (63.40, 80.79)

P11 (29) 10.01 (8.93, 10.83) 14.44 (7.44, 16.80) 18.67 (10.86, 23.07)

P12 (52) 16.87 (16.28, 17.47) 16.51 (15.78, 17.42) 59.62 (35.43, 83.08)

P13 (96) 22.77 (21.89, 23.75) 31.39 (29.55, 32.85) 30.69 (28.13, 33.10)

Overall (6280) 16.88 (15.84, 18.13) 24.41 (21.33, 27.45) 25.99 (19.12, 30.94)
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concentrations.Moreover, clusters P9 and P10 have the shortestmedian
residential distance tomajor highways (478m and 230m respectively).
Even though pollutant cluster P13 exhibited the highest average PM2.5

in addition to elevated NO2 and NO, this cluster is emblematic of com-
bined high levels of regional sources of PM2.5 and secondary particulate
formation from traffic emissions. For instance, compared to all other
clusters, P13 shows some of the strongest positive correlation between
NO2 and PM2.5, a low NO/NO2 ratio and low normalized NO and NO2

levels. The pollutant metrics including maternal distance to highways
(Fig. 4), between-pollutant correlations (Table 2), normalized NO con-
centration, and NO/NO2 ratio (Fig. 3), indicate that all other pollutant
profile clusters are more characteristic of secondary traffic-related pol-
lution and other non-local (or regional transport) PM2.5 sources instead
of primary traffic-related.
3.1.2. Pollutant cluster random effects
For each pollutant cluster, Table 3 presents the total number of

births, the number of TLBW cases, percent prevalence of TLBW, and
the posterior means and 95% credible intervals for the pollutant cluster
randomeffects. The cluster-specific effects represent the variation in the
baseline log odds of TLBW, after adjusting for individual-level covari-
ates, contextual cluster random effects, and accounting for spatially
structured and unstructured residual error. In Table 3 we also present
the posterior probability that a pollutant cluster effect is above the over-
all baseline log odds for TLBW (i.e. probability effect N zero).

Pollutant clusters with the highest probabilities for a random effect
above zero are clusters P9 and P10, with probabilities of 94.9% and
91.6%, respectively (Table 3). Pollutant cluster P13 showed the next
highest probability (77.4%). All other pollutant clusters showed proba-
bilities below 70% for posterior probabilities with effects above zero.
Pollutant clusters P1, P2, and P3 showed substantially lower baseline
log odds of TLBW (Table 3).
Fig. 1. Pearson correlation matrix of census block group level averages for air pollutants,
contextual variables, and pollutant metrics.
3.1.3. Spatial distribution of pollutant cluster effects
In Fig. 5wemapped the posterior probabilities for the pollutant clus-

ter random effects. This map indicates clustering within LA County's
urban core of downtown/metro LA, South-Central LA, and parts of east
LA County for the pollutant profile clusters associated with the highest
probability for increased baseline log odds of TLBW. Furthermore, the
census block groups with the largest certainty for elevated TLBW log
odds are mostly confined to census block groups near major highways;
suggesting that women exposed to air pollution mixtures near high-
ways have the greatest probability of delivering a TLBW baby.
3.2. Contextual clusters

The profile regression determined 14 distinct contextual profiles
clusters (C1–C14) and are summarized in Fig. 6. Since the contextual
clusters were developed separately from the pollutant clusters, these
contextual clusters are distinct from the pollutant clusters. Table 4 pre-
sents a summary of the contextual profile cluster random effects. Again,
these random effects represent the variation in the baseline log odds of
TLBW across contextual clusters in our multilevel model. Compared to
all other clusters, contextual cluster C6 showed the largest posterior
mean effect (0.124) and the highest probability for a baseline log odds
above the overall baseline log odds (probability = 99.5%). The income
distribution for cluster C6 is significantly below the overall median in-
come for LA County and consists of a significantly lower percentage of
non-HispanicWhites. Additionally,wefind that cluster C6has above av-
erage percentage of homes older than 1950, percentage of Blacks, and
percentage of Hispanics. The next two highest probability contextual
clusters are clusters C11 and C14, with elevated baseline TLBW log
odds probabilities of 90.2% and 81.6%, respectively. While contextual
clusters C11 and C14 have elevated percentages for homes older than
1950 and elevated percentages for Black populations, only C11 has sig-
nificantly lower median income levels. All other clusters fell below 80%
for elevated baseline TLBW log odds probabilities.

We alsomapped the spatial distribution of contextual profile cluster
effect probabilities in Fig. 7. This map indicates that contextual profile
clusters with the highest probabilities for an elevated baseline log
odds of TLBW are mostly in the urban core of LA County (central LA
and south central LA). As anticipated, we find a large degree of spatial
overlap between pollutant profile clusters with elevated effects on
TLBWand contextual profile clusterswith elevated effects on TLBW.De-
spite this spatial overlap, the two types high risk clusters take on distinct
spatial patterns from one another.
3.3. Fixed effects results

In Table 5 we summarize each fixed effects estimate and corre-
sponding 95% credible intervals from the multilevel spatial model.



Fig. 2. Spatial distribution of pollutant exposure profile clusters.
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Individual-level factors associated with odds of TLBW were female in-
fant sex, gestational days, and gestational days squared, as well as ma-
ternal factors such as parity, age, race-ethnicity, and education level.
4. Discussion

Our Bayesian profiling approach highlights the varied and distinct
spatial patterns of pollutant exposure profiles and how such exposures
contribute to TLBW within the context of clustered indicators of socio-
demographic and housing. While exposure profile clustering has been
used in previous epidemiologic studies (Molitor et al., 2014b;
Papathomas et al., 2010; Pirani et al., 2015; Zanobetti et al., 2014), no
such studies have examined birth outcomes. Our clustering procedure
and multilevel analysis provided concentration estimates for pollutants
and TLBW risk estimates for place-based air pollution mixtures across
LA County that take on a strong spatial structure.
Table 2
Between pollutant Pearson's correlations for the pollutant exposure profile clusters (P1–P13)a

Pollutants Pollutant clusters

P1 P2 P3 P4 P5 P6

NO2–NO 0.86 0.85 0.90 0.88 0.79 0.86
NO2–PM2.5 0.49 0.75 0.24 0.26 −0.42 0.37
NO–PM2.5 0.45 0.67 0.33 0.10 −0.14 0.38
PM2.5 ~ NO/NO2

b 0.16 0.38 0.36 −0.06 0.32 0.26

a Overall correlations: NO2–NO = 0.76, NO2–PM2.5 = 0.25, NO–PM2.5 = 0.26, PM2.5–NO/NO
b Correlation between PM2.5 concentration and the ratio of NO concentration to NO2 concen
4.1. Pollutant profile clusters and effects on TLBW

We find that census block groups adjacent to major highways in the
downtown/metro LA, South-Central LA, and parts of eastern LA County
show elevated PM2.5, NO2, and NO concentrations. We also find that
census block groups in downtown/metro LA, South-Central LA, and
east LA County, consistently had the most hazardous air pollution mix-
tures in relation to prevalence of TLBW.

We also identified profiles of clustered neighborhood contextual fac-
tors to show that sub-populations previously shown to be vulnerable to
TLBW are concentrated in the downtown/metro area of LA and South-
Central LA County. These high risk contextual clusters partially over-
lapped spatially with the most hazardous air pollution mixtures. Such
co-occurrence of clustered indicators of disadvantage and hazardous
air pollution mixtures reinforced the validity in our approach of
adjusting for such correlated factors in examining multiple pollutant
health effects.
.

P7 P8 P9 P10 P11 P12 P13

0.73 0.93 0.53 0.15 0.94 0.41 0.75
0.12 −0.27 0.15 −0.23 0.58 0.40 0.55

−0.11 −0.18 0.23 0.43 0.56 0.30 0.36
−0.27 0.02 0.18 0.54 0.15 0.27 0.14

2 ratio = 0.19.
tration.



Fig. 3. Boxplots of (a) NO/NO2 ratios, (b) normalized NO, and (c) normalized NO2 for each
pollutant cluster. The red line indicates the overall average for each of these pollutant
metrics.
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Spatially clustered emissions related to residential proximity to
emissions sources may explain why our multilevel analysis of pollutant
profile TLBW risks reveals such distinct spatial patterning. Spatial clus-
ter inducing factors may include localized circumstances, such as traffic
volumes and congestion, the vehicle fleet (e.g. heavy-duty trucks), and
higher exposures to specific primary PM components that result from
proximity to PM emissions sources. In our study, the spatial patterning
across pollutant profiles of maternal distance to major highways, be-
tween pollutant correlations, elevated concentrations of NO and NO2,
and elevated NO/NO2 ratios suggest that clusters reflective of primary
traffic emissions tended to impart the greatest risk of TLBW (i.e. pollut-
ant clusters P9 and P10). For instance our spatial proximity data show
that the highest risk pollutant clusters (P9 and P10) are characterized
Fig. 4. Distribution of residential distance to highways among mothers within each
pollutant cluster. Redline indicates the overall median for all maternal residential
distances (median = 867 m).
by the smallest median maternal residential distances to major road-
ways, compared to all other cluster-specific residential distances to
highways. In terms of primary traffic emission above background levels,
the residential distances for P9 and P10 are consistent with the litera-
ture that suggest primary traffic emissions decay to background levels
between 115 m to 570 m (Karner et al., 2010). In addition, there was
clear spatial clustering of higher risk pollutant profiles (P9 and P10) at
interchanges where LA's major interstate highways (I-5, I-110, I-710,
and I-10) converge in central and south-central areas of LA County.
This is suggestive of highly localized traffic and emission patterns that
are germane to these major highways and their intersections.

Findings from our study are notably consistentwith our earlier stud-
ies and other's conducted in LACounty that found variation in estimated
effects on birth outcomes between traffic-related sources of air pollu-
tion (e.g. traffic-related versus natural background sources) and prox-
imity to major roadways (Laurent et al., 2014; Ritz et al., 2007;
Wilhelm et al., 2011a; Wilhelm and Ritz, 2005). When juxtaposed
with other recent studies (Bell et al., 2011; Coker et al., 2015; Laurent
et al., 2014; Pirani et al., 2015; Wilhelm et al., 2011a; Zanobetti et al.,
2014), our findings carry the implication that TLBW risks related to spa-
tial patterns in exposure combined with the physical and chemical
properties of PM2.5 requires further investigation, and further suggests
important spatially derived hypotheses. For instance, recent findings
by our group showed that the exposure response relationship of PM2.5

on TLBW varied spatially across LA County (Coker et al., 2015). Spatially
varying effects suggests greater than additive health impacts influenced
by (1) the sources of localized emissions, (2) proximity to PM sources
(Buonocore et al., 2009; Cho et al., 2009; Greco et al., 2007; Kuhn
et al., 2005; Laurent et al., 2014;Wagner et al., 2012), and (3) the varied
pollutant profiles associated with proximity to different emissions
sources of PM2.5 (Laurent et al., 2014).

An important limitation of previous studies that attempted to find
gradients in TLBW risk associated with various PM2.5 components is
the inability to pinpoint major sources or components contributing to
TLBW risks. Instead, nearly all sources and components imparted a
risk of exposure and are correlated. For example, the inherent depen-
dencies between PM2.5, PM0.1, and various carbonaceous particulates
(e.g. organic carbon, black carbon, and elemental carbon), or between
PM2.5 and sulfates in the exposure model used by Laurent et al.
(2014), made it impossible to parse out which fraction sizes, compo-
nents within PM2.5- or combination thereof - are most likely to impart
the greatest TLBW risk (Laurent et al., 2014). A singlemajor source com-
bined with certain spatially determined factors may produce a particu-
lar air pollutionmixture that is more hazardous, yet multiple regression
techniques struggle to distinguish between them.

The results fromours and a recent study by Pirani et al. (2015), show
that Bayesian profile regression provides a tangible clustering proce-
dure to develop profiles of exposure tomultiple pollutants and simulta-
neously provide visualization tools. For instance, Pirani et al. (2015)
studied variations in respiratory mortality across exposure profile clus-
ters using a similar Bayesian profile regression. They found that days
with high levels of secondary particulates (e.g. nitrates and sulfates)
imparted the highest mortality risk in comparison to all other PM2.5

component exposure profiles. Thus, rather than multiple regression
models with pollutants and sources being highly correlated (Hampel
et al., 2015; Laurent et al., 2014), our clustering approach could be ap-
plied to develop PM-exposure profiles using data on PM2.5 components,
sources, and size fractions. Furthermore, our spatially-based clustering
approach enables identification and mapping of sub-regions that are
characterized by the most hazardous PM-source components.

Rather than simply examining gradients in multipollutant health
outcome risks devoid of spatial information, our study illustrates the im-
portance in examining the spatial patterning of multipollutant health
effects to help bring out the likely causes of apparent non-linear effects.
For example, pollutant cluster P9 - reflective of primary traffic PM2.5 pol-
lution - was not the only cluster with elevated concentrations for all



Table 3
Prevalence of TLBW for multipollutant clusters and model results for multipollutant exposure profile cluster random effects (N = 804,726).

Cluster No. birthsa No. TLBW % TLBWb (95% CI) Cluster effectc,d (95% CI) Probability effect N 0e

P1 29394 431 1.47⁎ (1.33, 1.61) −0.122 (−0.254, 0.008) 0.033
P2 34263 589 1.72⁎ (1.58, 1.86) −0.108 (−0.232, −0.015) 0.042
P3 79199 1555 1.96 (1.87, 2.06) −0.026 (−0.133, 0.081) 0.315
P4 168145 3305 1.97 (1.89, 2.03) 0.006 (−0.093, 0.106) 0.548
P5 66035 1595 2.42⁎ (2.30, 2.53) 0.017 (−0.092, 0.126) 0.619
P6 58164 1067 1.83⁎ (1.73, 1.95) 0.003 (−0.109, 0.115) 0.519
P7 256817 5612 2.19⁎ (2.13, 2.24) 0.019 (−0.080, 0.117) 0.642
P8 7452 113 1.52⁎ (1.25, 1.82) −0.096 (−0.275, 0.079) 0.141
P9 77336 1824 2.36⁎ (2.25, 2.47) 0.089 (−0.018, 0.195) 0.949
P10 3171 82 2.59 (2.06, 3.20) 0.141 (−0.060, 0.338) 0.916
P11 3491 74 2.12 (1.67, 2.65) 0.043 (−0.168, 0.252) 0.656
P12 3357 51 1.52 (1.13, 1.99) −0.012 (−0.232, 0.205) 0.459
P13 17902 396 2.21 (2.00, 2.44) 0.055 (−0.087, 0.196) 0.774
Overall 804,726 16,694 2.07 (2.04, 2.11)

a Full term births (N259 days gestation).
b Percent prevalence of TLBWwithout model adjustment.
c Adjusted for maternal age, race, education, and parity, infant sex, gestation (days), gestation-squared, and contextual random effect clusters.
d Random effect presented on the log-odds scale.
e Probabilities were calculated utilizing the “inla.pmarginal” function in INLA.
⁎ TLBW prevalence is significantly (p-value b 0.01, two-sided) different from the overall proportion of TLBW (unadjusted).
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study pollutants. Cluster P9, however, displayed the highest probability
for an estimated effect above zero and the second highest effect esti-
mate size, despite other pollutant clusters displaying higher PM2.5 or
higher NO and NO2 concentrations. The only other pollutant cluster
with a larger estimated effect sizewas cluster P10, whichwas also char-
acteristic of primary traffic pollution. Whereas pollutant cluster P13 –
reflective of mostly secondary traffic PM2.5 – has a PM2.5 concentration
30% higher than P9 and P10. Despite this, the estimated effect size for
cluster P13 is lower than P9 and P10. Our approach thus identifies pat-
terns that help explain apparent non-linear effects, such as: (1)mapping
of cluster effects that exhibited strong spatial patterns related to major
roadways, (2) the variations in pollutant metrics such as correlations
and pollutant ratios across clusters combined with the spatial pattern-
ing of these pollutant metrics, and (3) the influence of residential dis-
tance to major roadways. These spatial data provide strong evidence
Fig. 5. Spatial distribution of pollutant profile cl
that primary traffic emissions uniquely impart the largest effect on
TLBW.

4.2. Correlated pollutants and health effects research

Our approach to examininghealth effects of correlated exposures via
exposure profile clusters offers several advantages compared to co-
pollutant regression methods. Problems with collinearity within a mul-
tivariate regression include inflated variance in regression coefficients,
unstable effect estimates, and causal inference challenges (Dormann
et al., 2013; Lin, 2008; Schmidt and Muller, 1978). Several outdoor air
pollution studies find that pollutants contribute to a health outcome
in single pollutant models; however, mutual adjustment for correlated
pollutants can result in no pollutant showing an association (Ebisu
and Bell, 2012) or coefficients flipping sides i.e. opposite in direction
uster random effect posterior probabilities.



Fig. 6. Contextual profile clusters: cluster size (number of census block groups) and posterior distributions for median income, percent older homes, percent black, percent white, and
percent Hispanic (Nclusters = 14). Black lines indicate the overall average exposure for a given covariate.

9E. Coker et al. / Environment International 91 (2016) 1–13
from single pollutant models (Kelsall et al., 1997). Furthermore, wheth-
er mutual adjustment is necessary – i.e. whethermultiple pollutants ac-
tually confound each other – cannot be determined in models with
highly correlated pollutants. When we analyze our data using a co-
pollutant model that includes all pollutants in a multivariate regression
model, we find instability of specific pollutant coefficient estimates and
increased standard errors (see Table S2 in the Supplemental materials).
Also, while we find suggestive evidence for a statistically significant in-
teraction between NO and NO2 in a co-pollutant model (Table S1, Sup-
plemental materials), the interpretation is challenging since both
pollutants tend to co-vary and are linked through conversion into
Table 4
Prevalence of TLBW for contextual clusters andmodel results for contextual exposure pro-
file cluster random effects (N = 804,726).

Cluster No.
birthsa

No.
TLBW

% TLBWb (95%
CI)⁎

Cluster effectc,d (95%
CI)

Probability
effect N 0e

C1 64018 965 1.51* (1.42, 1.60) −0.09 (−0.19, 0.02) 0.05
C2 95559 1869 1.96 (1.87, 2.05) −0.03 (−0.12, 0.07) 0.30
C3 76163 1218 1.60* (1.51, 1.69) −0.08 (−0.18, 0.02) 0.07
C4 39105 787 2.01 (1.88, 2.16) −0.03 (−0.14, 0.08) 0.31
C5 38084 809 2.12 (1.98, 2.27) −0.002 (−0.11, 0.11) 0.49
C6 112919 2970 2.63* (2.54, 2.73) 0.12 (0.03, 0.22) 0.99
C7 39738 912 2.30* (2.15, 2.45) 0.03 (−0.08, 0.14) 0.71
C8 165328 3384 2.05 (1.98, 2.12) 0.03 (−0.07, 0.12) 0.71
C9 101455 2040 2.01 (1.93, 2.10) 0.02 (−0.07, 0.14) 0.67
C10 2624 42 1.60 (1.18, 2.16) −0.08 (0.30, 0.13) 0.22
C11 43403 975 2.25 *(2.11, 2.39) 0.07 (−0.04, 0.17) 0.90
C12 963 18 1.87 (1.18, 2.95) 0.07 (−0.31, 0.18) 0.30
C13 18784 538 2.86*(2.64, 3.11) 0.03 (−0.09, 0.15) 0.68
C14 6583 167 2.54*(2.18, 2.95) 0.07 (−0.09, 0.23) 0.82

a Full term births (N259 days gestation).
b Percent prevalence of TLBWwithout model adjustment.
c Adjusted for maternal age, race, education, and parity, infant sex, gestation (days),

gestation-squared, and pollutant random effect clusters.
d Random effect presented on the log-odds scale.
e Probabilities were calculated utilizing the “inla.pmarginal” function in INLA.
⁎ TLBWprevalence is significantly (p-value b 0.01, two-sided) different from the overall

proportion of TLBW (unadjusted).
one-another by atmospheric chemistry involving ozone. Bayesian pro-
file regression on the other hand harnesses the collinearity of air pollut-
ants to find meaningful patterns of joint exposure that are relevant for
determining different health risks across pollutant clusters.

Another important problem with multipollutant modeling is that
correlations between pollutants can vary over space (Dionisio et al.,
2014; Levy et al., 2013; Snowden et al., 2015). Spatial variability in pol-
lutant correlations between and within urban communities is challeng-
ing because it can lead to exposuremeasurement error and further calls
into question estimating co-pollutant effects reliably. It is also unclear
whether results from studies in one particular region are generalizable
to others that have different spatial patterns of pollutant correlations.
Consistent with previous studies (Dionisio et al., 2014; Levy et al.,
2013),we found substantialwithin county variability in pollutant corre-
lations between our pollutant clusters (Figs. S6 and S7, Supplemental
materials). To some extent our approach overcomes spatial variation
in pollutant correlations because we characterized the heterogeneity
in pollutant relationships across space, and further relate these expo-
sure profiles to a health outcome. Hence, employing our approach in en-
vironmental health studies may better inform policies designed to
protect public health since policies can be tailored towards pollution
mixtures relevant to a specific area.

4.3. Contextual neighborhood effects on TLBW

An important aspect to our pollutant clustering approach lies in si-
multaneously adjusting for clustered neighborhood indicators of disad-
vantage (i.e. income and race) and older housing. While other
contextual factors related to TLBWcould have been included in our clus-
tering procedure, it is clear that our clustering variables are highly cor-
related with other adverse contextual factors (i.e. education, housing
values, low social support, neighborhood greenness, violent crimes,
etc.) in southern California, and thus likely account for these other con-
textual factors (Boggess and Hipp, 2010; Conway et al., 2010; English
et al., 2003; Ghosh et al., 2010). Furthermore, since our contextual var-
iables correlate with one another and correlate with pollutants, it was
important to separate out the contextual area-level effects from the



Fig. 7. Spatial distribution of contextual profile cluster random effect posterior probabilities.
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pollutant profile cluster effects. Despite the spatial similarity between
the two different types of clusters in our study, the high risk contextual
clusters display a spatial pattern that is distinct from the high risk pol-
lutant clusters, suggesting that these two separate exposure profiles
measured different spatial patterns of risk related to their respective
variables.
Table 5
Fixed effects odds ratios of TLBW for individual-level covariatesa (N = 804,726).

Fixed effects covariates Odds ratio 2.5% quantile 97.5% quantile

Infant
Male (reference) 1
Female 1.45 1.40 1.49

Parity
No previous births (reference) 1
≥1 previous birth 0.59 0.57 0.61
Maternal age
b20 years (reference) 1
20–24 years 0.97 0.92 1.03
25–29 years 0.90 0.85 0.96
30–34 years 0.91 0.86 0.97
≥35 1.06 1.00 1.14

Maternal education
0–8 years (reference) 1
9–12 years 0.90 0.86 0.94
13–15 years 0.75 0.70 0.79
≥16 years 0.66 0.62 0.71

Race/ethnicity
Non-Hispanic White (reference) 1
Hispanic 1.08 1.02 1.15
Non-Hispanic Black 2.16 2.01 2.32
Non-Hispanic Asian 1.42 1.32 1.53
Other 1.81 1.67 1.97

Gestation (days) 0.32 0.30 0.33
Gestation-squared 1.0019 1.0018 1.002

a ORs represent covariate fixed effects estimated from the multilevel model. Random
effects in this model were pollutant clusters, contextual clusters, a spatial random error
term based on adjacent census tracts, and a spatially unstructured random error term.
4.4. Study limitations

We lacked data on speciation and tracers for specific sources of
PM2.5, which limits our ability to attribute a particular air pollution
source to effects on TLBW. Despite this limitation, the spatial patterning
of our results, supplemented with metrics such as cluster-specific NO/
NO2 ratios and between pollutant correlations, offers strong evidence
implicating primary traffic pollution. Another limitation lies in the lack
of fine-scale spatial data for other air toxics (i.e. benzene, ozone and car-
bon monoxide). Since we lack data on other air toxics that correlate
with the pollutants considered in our study (Fujita et al., 2011; Ghosh
et al., 2012; Laurent et al., 2014; Protano et al., 2012; Salam et al.,
2005; Wilhelm et al., 2011a), we cannot say whether and how these
other pollutants may contribute to the observed spatial patterning of
TLBW risks. Other limitations include a lack of information on indoor
air pollution exposure and time-activity patterns that may influence
air pollution exposures, such as information about whether the
women worked outside the home (Ritz et al., 2007) or commuted
daily (Zuurbier et al., 2010); all of which can contribute further to expo-
sure misclassification. However, recent findings suggest that maternal
outdoor air pollution estimates at the home address are unlikely affect-
ed by a lack of time-activity patterns during pregnancy (Ouidir et al.,
2015). Finally, while our approach offers several important advantages
over previous air pollution profile studies, our Bayesian approach is cur-
rently limited in regards to handling a dataset with high dimensionality,
which can only be overcome via future gains in computational
efficiencies.
4.5. Study strengths

The primary strength of our study is that we were able to examine
exposures to multiple correlated air pollutants and a health outcome,
mitigating some of the typical problems encountered with correlated
exposures. Our study also had a large sample size and used
population-wide data for exposure, thus avoiding selection of a study
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population based on proximity tomajor sources of air pollution or prox-
imity to central site monitors (Dionisio et al., 2014; Kumar, 2012). An-
other strength is adjustment for individual-level covariates and
contextual factors associated with TLBW, and adjustment for spatial re-
sidual confounding at the census tract-level. Another important
strength is that we were able to fit a multilevel/hierarchical random ef-
fects model for the clustered pollutant profiles and contextual profiles
enabling us to look at multiple profile-specific risks, thus avoiding
some of the issues related tomultiple testing ofmyriad exposure/SES ef-
fects on health (Gelman and Hill, 2006).

5. Conclusion

Our Bayesian clustering procedures allowed us to go beyond simple
one-at-a-time analyses usually employed to examinemarginal effects of
individual pollutants on health. Further, this spatially distributed mix-
tures approach provides information on the spatial distribution of expo-
sure/SES profiles that pertain to the levels of various pollutants and SES
factors. Policy analysts can use this information to determine which ex-
posure/SES profiles dominate a particular sub-region of L.A. County, as a
starting point for regulatory considerations. In our analyses, we found
that neighborhood-level PM2.5, NO2, and NO concentrationswere corre-
lated with census block group-level contextual factors throughout LA
County; and the nature of these relationships was quite complex and
highly spatially variable across the County. Moreover, the pollutant pro-
file clusters showed a strong spatial contrast with respect to exposure-
related TLBW risks. LA County's urban core, south-central urban region,
and parts of the eastern-most region of the county exhibited the largest
exposures for PM2.5, NO2, and NO, which decreased with distance from
major highways. Moreover, the highest concentration pollutant profile
clusters imparted the greatest TLBW risks, especially those closest to
major highways, which suggests near roadway emissions are more im-
portant in terms of risk of adverse birth outcomes related to these air
pollution profiles.
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