272 research outputs found

    The Effects of Cognitive Stress on Asthma Exacerbations among University Students

    Get PDF
    Introduction: Many asthmatics complain of worsening respiratory symptoms during periods of stress.This study evaluated the relationship among asthma symptoms, lung physiology, inflammatory parametersand perceived cognitive stress and quality of life in healthy adult students. This relationship was assessedat two time points: a time of normal activity and at a time of cognitive stress during academic examinations. Methods: Subjects attended the University of Alberta Hospital for a screening visit, which included aclinical exam, spirometry, methacholine challenge, allergen skin tests to assess atopy status and MiniInternational Neuropsychiatric Interview (MINI). Eligible subjects returned for a low stress visit (LSV) atleast 14 days prior to an exam and a high stress visit (HSV) within 24 hours of an exam. Spirometry, andmethacholine challenge were performed during both LSV and HSV along with the collection of urine (testedfor cortisol), and the administration of 4 questionnaires to assess perceived stress and quality of life. Results: Subjects showed no significant change in psychosocial or quality of life questionnaires betweenLSV and HSV. No significant change was noted in lung function or urine cortisol. There was an unexpectedhigh rate of pre-existing psychiatric comorbidities in this population (based on the MINI screen failure rate).Conclusion: We did not find a significant change in quality of life, psychosocial wellbeing or pulmonaryfunction or inflammation, measured by urine cortisol, during a high stress period. The high rate ofcomorbidities would be important to consider as part of evaluation used in clinical asthma studies in the future

    A protease activated receptor-2 (PAR-2) activating peptide, tc-LIGRLO-NH(2), induces protease release from mast cells: role in TNF degradation

    Get PDF
    BACKGROUND: Mast cell (MC)-derived serine proteases have been implicated in a variety of inflammatory processes. We have previously shown that rat peritoneal MC (PMC) express mRNA for protease activated receptor 2 (PAR-2), a G-coupled receptor activated by trypsin-like proteases. Recent evidence also suggests that MC-induced inflammation can be mediated through PAR. Therefore, we hypothesized that specific PAR-2 agonist peptides (PAR-2ap) induce protease release from PMC. RESULTS: Western blot analysis of PMC supernatants revealed that a PAR-2ap, tc-LIGRLO (10 μM), stimulated the release of rat MC protease (RMCP)-1, RMCP-5 and carboxypeptidase-A. The release was evident by 20 min but further increased up to 8 h. To study the biological effects of protease release we tested supernatants from tc-LIGRLO, tc-OLRGIL (inactive control peptide) and antigen-activated PMC for proteolytic activity by seeding with TNF (150 pg/ml), incubating for 8 h at 37°C, and measuring TNF remaining in the supernatants. Supernatants from tc-LIGRLO-stimulated PMC degraded 44 % of seeded TNF (n = 5). Moreover, this TNF proteolysis was dependent on the concentration of tc-LIGRLO used to stimulate PMC, and was significantly inhibited (94 %) by soybean trypsin inhibitor. Antigen and tc-OLRGIL induced no significant release of such proteolytic activity. CONCLUSIONS: These data indicate that a PAR-2ap induces the release of proteases from mast cells, which may degrade extracellular cytokines and other substrates thus modulating the inflammatory response

    Mucosal exposure to cockroach extract induces allergic sensitization and allergic airway inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic sensitization to aeroallergens develops in response to mucosal exposure to these allergens. Allergic sensitization may lead to the development of asthma, which is characterized by chronic airway inflammation. The objective of this study is to describe in detail a model of mucosal exposure to cockroach allergens in the absence of an exogenous adjuvant.</p> <p>Methods</p> <p>Cockroach extract (CE) was administered to mice intranasally (i.n.) daily for 5 days, and 5 days later mice were challenged with CE for 4 consecutive days. A second group received CE i.n. for 3 weeks. Airway hyperresponsiveness (AHR) was assessed 24 h after the last allergen exposure. Allergic airway inflammation was assessed by BAL and lung histology 48 h after the last allergen exposure. Antigen-specific antibodies were assessed in serum. Lungs were excised from mice from measurement of cytokines and chemokines in whole lung lysate.</p> <p>Results</p> <p>Mucosal exposure of Balb/c mice to cockroach extract induced airway eosinophilic inflammation, AHR and cockroach-specific IgG1; however, AHR to methacholine was absent in the long term group. Lung histology showed patchy, multicentric damage with inflammatory infiltrates at the airways in both groups. Lungs from mice from the short term group showed increased IL-4, CCL11, CXCL1 and CCL2 protein levels. IL4 and CXCL1 were also increased in the BAL of cockroach-sensitized mice in the short-term protocol.</p> <p>Conclusions</p> <p>Mucosal exposure to cockroach extract in the absence of adjuvant induces allergic airway sensitization characterized by AHR, the presence of Th2 cytokines in the lung and eosinophils in the airways.</p

    Probiotic VSL#3-induced TGF-β ameliorates food allergy inflammation in a mouse model of peanut sensitization through the induction of regulatory T cells in the gut mucosa.

    Get PDF
    SCOPE: Among food allergies, peanut allergy is frequently associated with severe anaphylactic reactions. In the need for safe and effective therapeutic strategies, probiotics may be considered on the basis of their immunomodulatory properties. The aim of the present study was to investigate the immunological mediators involved in the effects of probiotic VSL#3 oral supplementation on Th2 inflammation and anaphylaxis in a mouse model of peanut allergy. METHODS AND RESULTS: VSL#3 supplementation to peanut-sensitized mice was effective in ameliorating anaphylaxis and Th2-mediated inflammation, by promoting regulatory responses in the jejunum mucosa and in the mesenteric lymph node, as evaluated by ELISA, real-time PCR, histologic, and immunohistochemical analysis. Probiotic-induced TGF-β mediates its protective effects through the induction of regulatory T cells expressing FOXP3 and/or latency-associated peptide, as proven by in vivo blockade of TGF-β in VSL#3-treated mice with a neutralizing monoclonal antibody one day before challenge. CONCLUSION: TGF-β, induced in the gut by VSL#3 supplementation, is capable of reducing the Th2 inflammation associated with food anaphylaxis in a mouse model of peanut sensitization. TGF-β acts through the induction/maintenance of regulatory T cells expressing FOXP3 and/or latency-associated peptide. Probiotics supplementation may represent an effective and safe strategy for treating food allergies in adult population

    Rhinosinusitis derived Staphylococcal enterotoxin B plays a possible role in pathogenesis of food allergy

    Get PDF
    BACKGROUND: Staphylococcal enterotoxin B (SEB) is a potent immunomodulator and implicated with pathogenesis of inflammatory diseases mediated by Th1 or Th2 dominant immune responses. The objective of this study is to determine a possible association between rhinosinusitis derived SEB and pathogenesis of food allergy (FA). METHODS: The study included chronic rhinosinusitis (CRS) patients with FA (N = 46) or without FA (N = 33). Controls included FA patients without CRS (N = 26) and healthy volunteers (N = 25). In CRS patients, we assessed the parameters associated with FA including prick skin test (PST) reactivity to food allergens, serum levels of allergen-specific IgE and cytokines (IL-4, IL-13, IFN-ĂŽ(3)), and the number/reactivity of food-allergen specific Th1/Th2 cells in the peripheral blood before and 2 months after sinus surgery. Changes of these parameters were evaluated in comparison with changes in SEB concentration in the sinus lavage and stool samples and also in vitro reactivity to SEB. In CRS patients with FA, we also assessed changes in reactivity to oral challenge of offending food before and after sinus surgery. RESULTS: Two months following sinus surgery, we observed statistically significant reduction in PST and oral challenge reactivity in CRS patients with FA in parallel to decrease in serum levels of Th2 cytokines (IL-4 and IL-13) and allergen specific IgE. Improvement of reactivity to food allergens was positively associated with decline in SEB concentrations in the sinus lavage and stool samples. In vitro study results also indicated a role of SEB in aggravation of Th2 skewed responses to food allergens. Such changes were not observed in CRS-non FA patients or control FA patients. CONCLUSION: The rhinosinusitis derived SEB plays a certain role in the pathogenesis of FA by augmenting and/or maintaining polarized Th2 responses. Removal of SEB-producing pathogens from the rhinosinuses may be beneficial for attenuating the FA symptoms in patients with CRS-FA

    Human Disease-Drug Network Based on Genomic Expression Profiles

    Get PDF
    BACKGROUND: Drug repositioning offers the possibility of faster development times and reduced risks in drug discovery. With the rapid development of high-throughput technologies and ever-increasing accumulation of whole genome-level datasets, an increasing number of diseases and drugs can be comprehensively characterized by the changes they induce in gene expression, protein, metabolites and phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We performed a systematic, large-scale analysis of genomic expression profiles of human diseases and drugs to create a disease-drug network. A network of 170,027 significant interactions was extracted from the approximately 24.5 million comparisons between approximately 7,000 publicly available transcriptomic profiles. The network includes 645 disease-disease, 5,008 disease-drug, and 164,374 drug-drug relationships. At least 60% of the disease-disease pairs were in the same disease area as determined by the Medical Subject Headings (MeSH) disease classification tree. The remaining can drive a molecular level nosology by discovering relationships between seemingly unrelated diseases, such as a connection between bipolar disorder and hereditary spastic paraplegia, and a connection between actinic keratosis and cancer. Among the 5,008 disease-drug links, connections with negative scores suggest new indications for existing drugs, such as the use of some antimalaria drugs for Crohn's disease, and a variety of existing drugs for Huntington's disease; while the positive scoring connections can aid in drug side effect identification, such as tamoxifen's undesired carcinogenic property. From the approximately 37K drug-drug relationships, we discover relationships that aid in target and pathway deconvolution, such as 1) KCNMA1 as a potential molecular target of lobeline, and 2) both apoptotic DNA fragmentation and G2/M DNA damage checkpoint regulation as potential pathway targets of daunorubicin. CONCLUSIONS/SIGNIFICANCE: We have automatically generated thousands of disease and drug expression profiles using GEO datasets, and constructed a large scale disease-drug network for effective and efficient drug repositioning as well as drug target/pathway identification
    • …
    corecore