678 research outputs found

    Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil

    Full text link
    [EN] Stochastic upscaling of flow and reactive solute transport in a tropical soil is performed using real data collected in the laboratory. Upscaling of hydraulic conductivity, longitudinal hydrodynamic dispersion, and retardation factor were done using three different approaches of varying complexity. How uncertainty propagates after upscaling was also studied. The results show that upscaling must be taken into account if a good reproduction of the flow and transport behavior of a given soil is to be attained when modeled at larger than laboratory scales. The results also show that arrival time uncertainty was well reproduced after solute transport upscaling. This work represents a first demonstration of flow and reactive transport upscaling in a soil based on laboratory data. It also shows how simple upscaling methods can be incorporated into daily modeling practice using commercial flow and transport codes.The authors thank the financial support by the Brazilian National Council for Scientific and Technological Development (CNPq) (Project 401441/2014-8). The doctoral fellowship award to the first author by the Coordination of Improvement of Higher Level Personnel (CAPES) is acknowledged. The first author also thanks the international mobility grant awarded by CNPq, through the Sciences Without Borders program (Grant Number: 200597/2015-9). The international mobility grant awarded by Santander Mobility in cooperation with the University of Sao Paulo is also acknowledged. DHI-WASI is gratefully thanked for providing a FEFLOW license.Almeida De-Godoy, V.; Zuquette, L.; Gómez-Hernández, JJ. (2019). Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil. Stochastic Environmental Research and Risk Assessment. 33(1):201-216. https://doi.org/10.1007/s00477-018-1624-zS201216331Ahuja LR, Naney JW, Green RE, Nielsen DR (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci Soc Am J 48:699. https://doi.org/10.2136/sssaj1984.03615995004800040001xBellin A, Lawrence AE, Rubin Y (2004) Models of sub-grid variability in numerical simulations of solute transport in heterogeneous porous formations: three-dimensional flow and effect of pore-scale dispersion. Stoch Environ Res Risk Assess 18:31–38. https://doi.org/10.1007/s00477-003-0164-2Brent RP (1973) Algorithms for minimization without derivatives. Prentice Hall, Englewood CliffsBrusseau ML (1998) Non-ideal transport of reactive solutes in heterogeneous porous media: 3. model testing and data analysis using calibration versus prediction. J Hydrol 209:147–165. https://doi.org/10.1016/S0022-1694(98)00121-8Brusseau ML, Srivastava R (1999) Nonideal transport of reactive solutes in heterogeneous porous media: 4. Analysis of the cape cod natural-gradient field experiment. Water Resour Res 35:1113–1125. https://doi.org/10.1029/1998WR900019Brutsaert W (1967) Some methods of calculating unsaturated permeability. Trans ASAE 10:400–404Cadini F, De Sanctis J, Bertoli I, Zio E (2013) Upscaling of a dual-permeability Monte Carlo simulation model for contaminant transport in fractured networks by genetic algorithm parameter identification. Stoch Environ Res Risk Assess 27:505–516. https://doi.org/10.1007/s00477-012-0595-8Cambardella CA, Moorman TB, Parkin TB, Karlen DL, Novak JM, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in central iowa soils. Soil Sci Soc Am J 58:1501. https://doi.org/10.2136/sssaj1994.03615995005800050033xCapilla JE, Rodrigo J, Gómez-Hernández JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geol 31:907–927. https://doi.org/10.1023/A:1007580902175Cassiraga EF, Fernàndez-Garcia D, Gómez-Hernández JJ (2005) Performance assessment of solute transport upscaling methods in the context of nuclear waste disposal. Int J Rock Mech Min Sci 42:756–764. https://doi.org/10.1016/j.ijrmms.2005.03.013Corey AT (1977) Mechanics of heterogeneous fluids in porous media. Water Resources Publications, Fort Collins, CO, p 259Dagan G (1989) Flow and transport in porous formations. Springer, Berlin. https://doi.org/10.1007/978-3-642-75015-1Dagan G (2004) On application of stochastic modeling of groundwater flow and transport. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-004-0191-7de Azevedo AAB, Pressinotti MMN, Massoli M (1981) Sedimentological studies of the Botucatu and Pirambóia formations in the region of Santa Rita do Passa Quatro (In portuguese). Rev do Inst Geológico 2:31–38. https://doi.org/10.5935/0100-929X.19810003Deng H, Dai Z, Wolfsberg AV, Ye M, Stauffer PH, Lu Z, Kwicklis E (2013) Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies. Chemosphere 91:248–257. https://doi.org/10.1016/j.chemosphere.2012.10.105Diersch H-JG (2014) Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin. https://doi.org/10.1007/978-3-642-38739-5Dippenaar MA (2014) Porosity reviewed: quantitative multi-disciplinary understanding, recent advances and applications in vadose zone hydrology. Geotech Geol Eng 32:1–19. https://doi.org/10.1007/s10706-013-9704-9Fagundes JRT, Zuquette LV (2011) Sorption behavior of the sandy residual unconsolidated materials from the sandstones of the Botucatu Formation, the main aquifer of Brazil. Environ Earth Sci 62:831–845. https://doi.org/10.1007/s12665-010-0570-yFenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, p 463Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Impact of upscaling on solute transport: Traveltimes, scale dependence of dispersivity, and propagation of uncertainty. Water Resour Res. https://doi.org/10.1029/2005WR004727Fernàndez-Garcia D, Llerar-Meza G, Gómez-Hernández JJ (2009) Upscaling transport with mass transfer models: mean behavior and propagation of uncertainty. Water Resour Res. https://doi.org/10.1029/2009WR007764Feyen L, Gómez-Hernández JJ, Ribeiro PJ, Beven KJ, De Smedt F (2003a) A Bayesian approach to stochastic capture zone delineation incorporating tracer arrival times, conductivity measurements, and hydraulic head observations. Water Resour Res. https://doi.org/10.1029/2002WR001544Feyen L, Ribeiro PJ, Gómez-Hernández JJ, Beven KJ, De Smedt F (2003b) Bayesian methodology for stochastic capture zone delineation incorporating transmissivity measurements and hydraulic head observations. J Hydrol 271:156–170. https://doi.org/10.1016/S0022-1694(02)00314-1Forsythe GE, Malcolm MA, Moler CB (1976) Computer methods for mathematical computations. Prentice-Hall, Englewood Cliffs, p 259Freeze R, Cherry J (1979) Groundwater. PrenticeHall Inc, Englewood cliffs, p 604Frippiat CC, Holeyman AE (2008) A comparative review of upscaling methods for solute transport in heterogeneous porous media. J Hydrol 362:150–176. https://doi.org/10.1016/j.jhydrol.2008.08.015Fu J, Gómez-Hernández JJ (2009) Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. J Hydrol 364:328–341. https://doi.org/10.1016/j.jhydrol.2008.11.014Gelhar LW, Axness CL (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19:161–180. https://doi.org/10.1029/WR019i001p00161Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974. https://doi.org/10.1029/92WR00607Giacheti HL, Rohm SA, Nogueira JB, Cintra JCA (1993) Geotechnical properties of the Cenozoic sediment (in protuguese). In: Albiero JH, Cintra JCA (eds) Soil from the interior of São Paulo. ABMS, Sao Paulo, pp 143–175Gómez-Hernandez JJ (1990) A stochastic approach to the simulation of block conductivity fields conditional upon data measured at a smaller scale. Stanford University, StanfordGómez-Hernández JJ, Gorelick SM (1989) Effective groundwater model parameter values: influence of spatial variabiity of hydraulic conductivity, leackance, and recharge. Water Resour Res 25:405–419Gómez-Hernández JJ, Journel A (1993) Joint sequential simulation of multigaussian fields. In: Geostatistics Tróia’92. pp 85–94. https://doi.org/10.1007/978-94-011-1739-5_8Gómez-Hernández JJ, Wen X-H (1994) Probabilistic assessment of travel times in groundwater modeling. Stoch Hydrol Hydraul 8:19–55. https://doi.org/10.1007/BF01581389Gómez-Hernández JJ, Fu J, Fernandez-Garcia D (2006) Upscaling retardation factors in 2-D porous media. In: Bierkens MFP, Gehrels JC, Kovar K (eds) Calibration and reliability in groundwater modelling: from uncertainty to decision making: proceedings of the ModelCARE 2005 conference held in The Hague, The Netherlands, 6–9 June, 2005. IAHS Publication, pp 130–136Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45. https://doi.org/10.1016/S0016-7061(98)00078-0Jarvis NJ (2007) A review of non-equilibrium water fl ow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546. https://doi.org/10.4141/cjss2011-050Jellali S, Diamantopoulos E, Kallali H, Bennaceur S, Anane M, Jedidi N (2010) Dynamic sorption of ammonium by sandy soil in fixed bed columns: evaluation of equilibrium and non-equilibrium transport processes. J Environ Manag 91:897–905. https://doi.org/10.1016/j.jenvman.2009.11.006Journel AG, Gomez-Hernandez JJ (1993) Stochastic imaging of the wilmington clastic sequence. SPE Form Eval 8:33–40. https://doi.org/10.2118/19857-PAJournel A, Deutsch C, Desbarats A (1986) Power averaging for block effective permeability. Proc SPE Calif Reg Meet. https://doi.org/10.2118/15128-MSKronberg BI, Fyfe WS, Leonardos OH, Santos AM (1979) The chemistry of some Brazilian soils: element mobility during intense weathering. Chem Geol 24:211–229. https://doi.org/10.1016/0009-2541(79)90124-4Lake LW (1988) The origins of anisotropy (includes associated papers 18394 and 18458). J Pet Technol 40:395–396. https://doi.org/10.2118/17652-PALawrence AE, Rubin Y (2007) Block-effective macrodispersion for numerical simulations of sorbing solute transport in heterogeneous porous formations. Adv Water Resour 30:1272–1285. https://doi.org/10.1016/j.advwatres.2006.11.005Lemke LD, Barrack WA II, Abriola LM, Goovaerts P (2004) Matching solute breakthrough with deterministic and stochastic aquifer models. Groundwater 42:920–934Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). J Hydrol 404:278–293. https://doi.org/10.1016/j.jhydrol.2011.05.001Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34:478–489. https://doi.org/10.1016/j.advwatres.2011.01.001Logsdon Keller KE, Moorman TB (2002) Measured and predicted solute leaching from multiple undisturbed soil columns. Soil Sci Soc Am J 66:686–695. https://doi.org/10.2136/sssaj2002.6860Lourens A, van Geer FC (2016) Uncertainty propagation of arbitrary probability density functions applied to upscaling of transmissivities. Stoch Environ Res Risk Assess 30:237–249. https://doi.org/10.1007/s00477-015-1075-8Mahapatra IC, Singh KN, Pillai KG, Bapat SR (1985) Rice soils and their management. Indian J Agron 30:R1–R41Morakinyo JA, Mackay R (2006) Geostatistical modelling of ground conditions to support the assessment of site contamination. Stoch Environ Res Risk Assess 20:106–118. https://doi.org/10.1007/s00477-005-0015-4Moslehi M, de Barros FPJ, Ebrahimi F, Sahimi M (2016) Upscaling of solute transport in disordered porous media by wavelet transformations. Adv Water Resour 96:180–189. https://doi.org/10.1016/j.advwatres.2016.07.013Osinubi KJ, Nwaiwu CM (2005) Hydraulic conductivity of compacted lateritic soil. J Geotech Geoenviron Eng 131:1034–1041. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1034)Remy N (2004) SGeMS: stanford geostatistical modeling software. Softw Man. https://doi.org/10.1007/978-1-4020-3610-1_89Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20:253–278. https://doi.org/10.1016/S0309-1708(96)00050-4Robin MJL, Sudicky EA, Gillham RW, Kachanoski RG (1991) Spatial variability of strontium distribution coefficients and their correlation with hydraulic conductivity in the Canadian forces base borden aquifer. Water Resour Res 27:2619–2632. https://doi.org/10.1029/91WR01107Salamon P, Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour Res. https://doi.org/10.1029/2006WR005522Sánchez-Vila X, Carrera J, Girardi JP (1996) Scale effects in transmissivity. J Hydrol 183:1–22. https://doi.org/10.1016/S0022-1694(96)80031-XScheibe T, Yabusaki S (1998) Scaling of flow and transport behavior in heterogeneous groundwater systems. Adv Water Resour 22:223–238. https://doi.org/10.1016/S0309-1708(98)00014-1Selvadurai PA, Selvadurai APS (2014) On the effective permeability of a heterogeneous porous medium: the role of the geometric mean. Philos Mag 94:2318–2338. https://doi.org/10.1080/14786435.2014.913111Shackelford CD (1994) Critical concepts for column testing. J Geotech Eng 120:1804–1828. https://doi.org/10.1016/0148-9062(95)96996-OŠimůnek J, van Genuchten MT, Šejna M, Toride N, Leij FJ (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Riverside, CaliforniaTaskinen A, Sirviö H, Bruen M (2008) Modelling effects of spatial variability of saturated hydraulic conductivity on autocorrelated overland flow data: linear mixed model approach. Stoch Environ Res Risk Assess 22:67–82. https://doi.org/10.1007/s00477-006-0099-5Tuli A, Hopmans JW, Rolston DE, Moldrup P (2005) Comparison of air and water permeability between disturbed and undisturbed soils. Soil Sci Soc Am J 69:1361. https://doi.org/10.2136/sssaj2004.0332Tyukhova AR, Willmann M (2016) Conservative transport upscaling based on information of connectivity. Water Resour Res 52:6867–6880. https://doi.org/10.1002/2015WR018331van Genuchten MTh (1980) Determining transport parameters from solute displacement experiments. Research Report 118. U.S. Salinity Lab., Riverside, CAVanderborght J, Timmerman A, Feyen J (2000) Solute transport for steady-state and transient flow in soils with and without macropores. Soil Sci Soc Am J 64:1305–1317. https://doi.org/10.2136/sssaj2000.6441305xVanmarcke E (2010) Random fields: analysis and synthesis. World Scientific. MIT Press, Cambridge, MA, p 364Vishal V, Leung JY (2017) Statistical scale-up of 3D particle-tracking simulation for non-Fickian dispersive solute transport modeling. Environ Res Risk Assess, Stoch. https://doi.org/10.1007/s00477-017-1501-1Wen X-H, Gómez-Hernández JJ (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183:ix–xxxii. https://doi.org/10.1016/S0022-1694(96)80030-8Wen XH, Gómez-Hernández JJ (1998) Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models. J Contam Hydrol 30:129–156. https://doi.org/10.1016/S0169-7722(97)00035-1Wen XH, Capilla JE, Deutsch CV, Gómez-Hernández JJ, Cullick AS (1999) A program to create permeability fields that honor single-phase flow rate and pressure data. Comput Geosci 25:217–230. https://doi.org/10.1016/S0098-3004(98)00126-5Wilding LP, Drees LR (1983) Spatial variability and pedology. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy: the soil orders. Elsevier, Amsterdam, pp 83–116Willmann M, Carrera J, Guadagnini A (2006) Block-upscaling of transport in heterogeneous aquifers. h2ogeo.upc.edu 1–7Xu Z, Meakin P (2013) Upscaling of solute transport in heterogeneous media with non-uniform flow and dispersion fields. Appl Math Model 37:8533–8542. https://doi.org/10.1016/j.apm.2013.03.070Zech A, Attinger S, Cvetkovic V, Dagan G, Dietrich P, Fiori A, Rubin Y, Teutsch G (2015) Is unique scaling of aquifer macrodispersivity supported by field data? Water Resour Res 51:7662–7679. https://doi.org/10.1002/2015WR017220Zhou H, Li L, Gómez-Hernández JJ (2010) Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Comput Geosci 36:1224–1235. https://doi.org/10.1016/j.cageo.2010.03.008Zhou H, Li L, Hendricks Franssen H-J, Gómez-Hernández JJ (2012) Pattern recognition in a bimodal aquifer using the normal-score ensemble Kalman filter. Math Geosci 44:169–185. https://doi.org/10.1007/s11004-011-9372-

    Rentabilidad privada de las granjas porcinas en el sur del Estado de México

    Get PDF
    La rentabilidad privada y la eficiencia de los costos privados son indicadores de competitividad en las granjas porcinas. El presente estudio se realizó en el Sur del Estado de México en 2006, y se basó en información proveniente de sesenta porcicultores de traspatio, dos de granjas semitecnificadas y una tecnificada. La Matriz de Análisis de Política fue el método usado y consiste en una serie de matrices de coeficientes técnicos y de precios de los insumos y del producto, con los que se derivó la matriz de presupuesto privado. Los tres sistemas productivos presentaron una rentabilidad positiva a precios privados, que variaron de 11 a 13 %. Asimismo, las relaciones de costo privado se situaron entre 0.53 y 0.58, lo que sugiere una alta competitividad. Para 2006 se concluyó que la producción porcícola de los sistemas mencionados permitió pagar el valor de mercado de factores internos, incluyendo la tasa de retorno normal del capital, y que la actividad productiva fue redituable en función de los precios recibidos y pagados

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons.

    Get PDF
    Intronic hexanucleotide expansions in C9ORF72 are common in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non-ATG-initiated translation are responsible for the pathophysiology. We determined the interactome of C9ORF72 in motor neurons and found that C9ORF72 was present in a complex with cofilin and other actin binding proteins. Phosphorylation of cofilin was enhanced in C9ORF72-depleted motor neurons, in patient-derived lymphoblastoid cells, induced pluripotent stem cell-derived motor neurons and post-mortem brain samples from ALS patients. C9ORF72 modulates the activity of the small GTPases Arf6 and Rac1, resulting in enhanced activity of LIM-kinases 1 and 2 (LIMK1/2). This results in reduced axonal actin dynamics in C9ORF72-depleted motor neurons. Dominant negative Arf6 rescues this defect, suggesting that C9ORF72 acts as a modulator of small GTPases in a pathway that regulates axonal actin dynamics

    Regulation of Intestinal Immune Response by Selective Removal of the Anterior, Posterior, or Entire Pituitary Gland in Trichinella spiralis Infected Golden Hamsters

    Get PDF
    The influence of anterior pituitary hormones on the gastrointestinal tract of humans and animals has been previously reported. Hypophysectomy (HYPOX) in the rat causes atrophy of the intestinal mucosa, and reduction of gastric secretion and intestinal absorption, as well as increased susceptibility to bacterial and viral infections. However, to our knowledge, no findings have been published concerning the immune response following HYPOX during worm infection, particularly that which is caused by the nematode Trichinella spiralis. The aim of this work was to analyze the effects of total or partial HYPOX on colonization of T. spiralis in the intestinal lumen, together with duodenal and splenic cytokine expression. Our results indicate that 5 days post infection, only neurointermediate pituitary lobectomy (NIL) reduces the number of intestinally recovered T. spiralis larvae. Using semiquantitative inmunofluorescent laser confocal microscopy, we observed that the mean intensity of all tested Th1 cytokines was markedly diminished, even in the duodenum of infected controls. In contrast, a high level of expression of these cytokines was noted in the NIL infected hamsters. Likewise, a significant decrease in the fluorescence intensity of Th2 cytokines (with the exception of IL-4) was apparent in the duodenum of control and sham infected hamsters, compared to animals with NIL surgeries, which showed an increase in the expression of IL-5 and IL-13. Histology of duodenal mucosa from NIL hamsters showed an exacerbated inflammatory infiltrate located along the lamina propria, which was related to the presence of the parasite. We conclude that hormones from each pituitary lobe affect the gastrointestinal immune responses to T. spiralis through various mechanisms

    Unfolded protein response is an early, non-critical event during hepatic stellate cell activation.

    Get PDF
    Hepatic stellate cells activate upon liver injury and help at restoring damaged tissue by producing extracellular matrix proteins. A drastic increase in matrix proteins results in liver fibrosis and we hypothesize that this sudden increase leads to accumulation of proteins in the endoplasmic reticulum and its compensatory mechanism, the unfolded protein response. We indeed observe a very early, but transient induction of unfolded protein response genes during activation of primary mouse hepatic stellate cells in vitro and in vivo, prior to induction of classical stellate cell activation genes. This unfolded protein response does not seem sufficient to drive stellate cell activation on its own, as chemical induction of endoplasmic reticulum stress with tunicamycin in 3D cultured, quiescent stellate cells is not able to induce stellate cell activation. Inhibition of Jnk is important for the transduction of the unfolded protein response. Stellate cells isolated from Jnk knockout mice do not activate as much as their wild-type counterparts and do not have an induced expression of unfolded protein response genes. A timely termination of the unfolded protein response is essential to prevent endoplasmic reticulum stress-related apoptosis. A pathway known to be involved in this termination is the non-sense-mediated decay pathway. Non-sense-mediated decay inhibitors influence the unfolded protein response at early time points during stellate cell activation. Our data suggest that UPR in HSCs is differentially regulated between acute and chronic stages of the activation process. In conclusion, our data demonstrates that the unfolded protein response is a JNK1-dependent early event during hepatic stellate cell activation, which is counteracted by non-sense-mediated decay and is not sufficient to drive the stellate cell activation process. Therapeutic strategies based on UPR or NMD modulation might interfere with fibrosis, but will remain challenging because of the feedback mechanisms between the stress pathways

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions
    corecore