46 research outputs found

    Gravitino constraints on models of neutrino masses and leptogenesis

    Get PDF
    In the supersymmetric extensions of the standard model, neutrino masses and leptogenesis requires existence of new particles. We point out that if these particles with lepton number violating interactions have standard model gauge interactions, then they may not be created after reheating because of the gravitino problem. This will rule out all existing models of neutrino masses and leptogenesis, except the one with right-handed singlet neutrinos.Comment: 12 pages latex file with one postscript figur

    Constraints On Radiative Neutrino Mass Models From Oscillation Data

    Get PDF
    The three neutrino Zee model and its extension including three active and one sterile species are studied in the light of new neutrino oscillation data. We obtain analytical relations for the mixing angle in solar oscillations in terms of neutrino mass squared differences. For the four neutrino case, we obtain the result sin22θ1[(ΔmAtm2)2/(4ΔmLSND2Δm2)]2\mathsf{sin^2 2 \theta_\odot \approx 1 - [ (\Delta m^2_{Atm})^2/(4 \Delta m^2_{LSND} \Delta m^2_\odot) ]^2}, which can accommodate both the large and small mixing scenarios. We show that within this framework, while both the SMA-MSW and the LMA-MSW solutions can easily be accommodated, it would be difficult to reconcile the LOW-QVO solutions. We also comment on the active-sterile admixture within phenomenologically viable textures.Comment: The paper has been substantially rewritten, especially in Section IV, though the basic results are unchanged. Some new references and an appendix have been adde

    Can R-parity violation explain the LSND data as well?

    Get PDF
    The recent Super-Kamiokande data now admit only one type of mass hierarchy in a framework with three active and one sterile neutrinos. We show that neutrino masses and mixings generated by R-parity-violating couplings, with values within their experimental upper limits, are capable of reproducing this hierarchy, explaining all neutrino data particularly after including the LSND results.Comment: 7 pages, Latex, 3 PS figures; in v2 a few clarifying remarks included and two references added (to appear in Physical Review D

    Neutrinoless double-beta decay with three or four neutrino mixing

    Full text link
    Considering the scheme with mixing of three neutrinos and a mass hierarchy that can accommodate the results of solar and atmospheric neutrino experiments, it is shown that the results of solar neutrino experiments imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay, under the natural assumptions that massive neutrinos are Majorana particles and there are no unlikely fine-tuned cancellations among the contributions of the different neutrino masses. Considering the four-neutrino schemes that can accommodate also the results of the LSND experiment, it is shown that only one of them is compatible with the results of neutrinoless double-beta decay experiments and with the measurement of the abundances of primordial elements produced in Big-Bang Nucleosynthesis. It is shown that in this scheme, under the assumptions that massive neutrinos are Majorana particles and there are no cancellations among the contributions of the different neutrino masses, the results of the LSND experiment imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay.Comment: 18 pages including 2 figures, RevTe

    Four Light Neutrinos in Singular Seesaw Mechanism with Abelian Flavor Symmetry

    Get PDF
    The four light neutrino scenario, which explains the atmosphere, solar and LSND neutrino experiments, is studied in the framework of the seesaw mechanism. By taking both the Dirac and Majorana mass matrix of neutrinos to be singular, the four neutrino mass spectrum consisting of two almost degenerate pairs separated by a mass gap 1\sim 1 eV is naturally generated. Moreover the right-handed neutrino Majorana mass can be at 1014\sim 10^{14} GeV scale unlike in the usual singular seesaw mechanism. Abelian flavor symmetry is used to produce the required neutrino mass pattern. A specific example of the flavor charge assignment is provided to show that maximal mixings between the νμντ\nu_\mu-\nu_\tau and νeνs\nu_e-\nu_s are respectively attributed to the atmosphere and solar neutrino anomalies while small mixing between two pairs to the LSND results. The implication in the other fermion masses is also discussed.Comment: Firnal version to appear in PR

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations
    corecore