57 research outputs found

    Evaluating temperate and tropical corn for biomass production in central Iowa

    Get PDF
    Corn (Zea mays L.) grain in part has been used in Midwestern U.S. for bioethanol production; however, corn stover for lignocellulosic ethanol is gaining interest as an alternative source of energy. Over two years, three studies explored the biomass potential of tropical corn, corn adapted from tropical regions, for biomass production toward lignocellulosic ethanol. The first study investigated the phenology of adapted and non-adapted tropical corn populations grown under central Iowa conditions. Field trials were conducted where three adapted populations (Tuxpeño, Suwan, and Tuson) and their non-adapted counterparts were planted at three dates during the 2014 and 2015 growing seasons. Although the adapted populations yielded more grain and had earlier reproductive development, non-adapted populations had 22% greater total biomass and 43% greater non-grain biomass, were taller, and showed greater vegetative development. Results of the first study suggest that non-adapted populations have a high potential as bioenergy feedstock when grown under Iowa conditions. The second study evaluated the biomass production and composition of temperate and tropical corn using a defined set of management practices. Additional field trials were established using six genotypes of different relative maturities planted with two plant densities, two row spacings, and two levels of nitrogen fertilization. The measurements included: (a) total biomass, height at the final leaf collar, and stem diameter at one meter above ground; (b) protein, oil, and starch concentrations in grain; and (c) lignocellulose, ash, and nitrogen concentrations of non-grain tissues. Temperate corn had greater grain yield, grain starch and matured earlier, as well as greater cellulose, lignin, and ash concentrations in non-grain tissues. However, tropical corn were taller and had greater non-grain biomass and up to 20% greater total biomass than temperate corn. Row spacing affected biomass yield: the narrower the rows, the greater the biomass. Nitrogen fertilizer rate affected grain and feedstock composition: the lower the rate, the higher the grain starch and lignocellulose composition. Lastly, the third study evaluated the growth, light interception, and nitrogen concentration of temperate and tropical corn during the middle of the growing season using a set of management practices oriented towards biomass production. The same field trials as the second study were used but at one level of nitrogen. Leaf area index (LAI), height at the final leaf collar, biomass, and nitrogen concentrations were measured. Using narrower rows, both temperate and tropical corn were taller, had greater stem and leaf nitrogen concentrations, and showed greater biomass accumulation, especially beyond 100 days after planting. However, LAI was greater for corn grown in wider rows at all the harvest dates. Tropical corn had greater LAI, plant height, and biomass than temperate at mid growing season, which continues through the season until final harvest. Overall, tropical corn proved to have good potential for use as a bioenergy feedstock for ethanol production

    Phenology and Biomass Production of Adapted and Non-Adapted Tropical Corn Populations in Central Iowa

    Get PDF
    Biofuel production in the midwestern United States has largely focused on corn (Zea mays L.) grain for ethanol production and more recently, corn stover for lignocellulosic ethanol. Tropical corn refers to corn adapted from tropical regions. Growing tropical germplasm in temperate environments is not attractive for grain yield, but shows promise for biomass production through taller and more vigorous plants with thick stems and long leaves. The comparison between tropical corn populations and their temperate adapted counterparts with a focus on biomass production has not yet been explored under Iowa growing conditions. This study refines the accuracy of the leaf collar method, and characterizes the adaptation of the populations by evaluating crop development and biomass production. Therefore, field trials were established in central Iowa during the 2014 and 2015 growing seasons. Adapted and non-adapted versions of three populations, Tuxpeño, Suwan, and Tuson, were planted at three dates to evaluate their phenology and potential for biomass production under midwestern U.S. conditions. Plant height correlated well with vegetative development and total biomass. Adapted tropical corn had advanced grain development, while non-adapted tropical corn had advanced vegetative development and greater biomass yield. Non-adapted tropical corn flowered later, had 22% greater total biomass on average (4.6 Mg ha–1 greater than adapted), and had 43% greater non-grain biomass on average, up to 20 Mg ha–1 (6 Mg ha–1 greater than adapted), while adapted populations yielded more grain. Non-adapted tropical corn has a high potential as feedstock for Gen2 biofuels in central Iowa

    Biomass Production and Composition of Temperate and Tropical Maize in Central Iowa

    Get PDF
    Bioethanol production in the midwestern U.S. has largely focused on maize (Zea mays L.) grain for starch-based ethanol production. There has been growing interest in lignocellulosic biomass as a feedstock for biofuels. Because maize adapted to the tropics does not initiate senescence as early as temperate-adapted maize, using a tropical germplasm could improve biomass yield. This study compares the suitability of temperate and tropical maize with differing relative maturities as feedstocks for bioethanol production. Field trials were established in central Iowa during the 2014 and 2015 growing seasons. Six hybrids of different relative maturities were grown at two levels of N fertilization and two row spacings to evaluate total biomass production and feedstock quality under midwestern U.S. conditions. Total biomass, height at the final leaf collar, stem diameter at one meter above ground, and lignocellulose concentration were measured at harvest. Tropical maize was taller and had greater non-grain and total biomass production (15% more than temperate maize), while temperate maize had greater grain yield and grain starch, as well as earlier maturation. Narrower row spacing had greater biomass and grain yield. Nitrogen fertilization rate affected grain and feedstock composition. Tropical maize had lower cellulose, lignin, and ash concentrations and higher nitrogen at harvest than that of temperate maize. Conversely, temperate maize had greater ash, cellulose, and lignin concentrations. Tropical maize planted at high densities has high potential as a feedstock for bioethanol production in the U.S. Midwest

    Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information

    Get PDF
    Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Measurements of b-jet tagging efficiency with the ATLAS detector using tt ¯ events at √s =13 TeV

    Get PDF
    The efficiency to identify jets containing b -hadrons (b -jets) is measured using a high purity sample of dileptonic top quark-antiquark pairs (tt ¯ ) selected from the 36.1 fb −1 of data collected by the ATLAS detector in 2015 and 2016 from proton-proton collisions produced by the Large Hadron Collider at a centre-of-mass energy s √ =13 TeV. Two methods are used to extract the efficiency from tt ¯ events, a combinatorial likelihood approach and a tag-and-probe method. A boosted decision tree, not using b -tagging information, is used to select events in which two b -jets are present, which reduces the dominant uncertainty in the modelling of the flavour of the jets. The efficiency is extracted for jets in a transverse momentum range from 20 to 300 GeV, with data-to-simulation scale factors calculated by comparing the efficiency measured using collision data to that predicted by the simulation. The two methods give compatible results, and achieve a similar level of precision, measuring data-to-simulation scale factors close to unity with uncertainties ranging from 2% to 12% depending on the jet transverse momentum

    Search for pairs of highly collimated photon-jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Results of a search for the pair production of photon-jets—collimated groupings of photons—in the ATLAS detector at the Large Hadron Collider are reported. Highly collimated photon-jets can arise from the decay of new, highly boosted particles that can decay to multiple photons collimated enough to be identified in the electromagnetic calorimeter as a single, photonlike energy cluster. Data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.7  fb−1, were collected in 2015 and 2016. Candidate photon-jet pair production events are selected from those containing two reconstructed photons using a set of identification criteria much less stringent than that typically used for the selection of photons, with additional criteria applied to provide improved sensitivity to photon-jets. Narrow excesses in the reconstructed diphoton mass spectra are searched for. The observed mass spectra are consistent with the Standard Model background expectation. The results are interpreted in the context of a model containing a new, high-mass scalar particle with narrow width, X, that decays into pairs of photon-jets via new, light particles, a. Upper limits are placed on the cross section times the product of branching ratios σ×B(X→aa)×B(a→γγ)2 for 200  GeV<mX<2  TeV and for ranges of ma from a lower mass of 100 MeV up to between 2 and 10 GeV, depending upon mX. Upper limits are also placed on σ×B(X→aa)×B(a→3π0)2 for the same range of mX and for ranges of ma from a lower mass of 500 MeV up to between 2 and 10 GeV
    corecore