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ABSTRACT



We performed the largest genetic study of Parkinson’s disease to date, involving analysis of
11.4M SNPs in 37.7K cases, 18.6K ‘proxy-cases’ and 1.4M controls, discovering 39 novel risk
loci. In total, we identified 92 putative independent genome-wide significant signals including 53
at previously published loci. Next, we dissected risk within these loci, identifying 22 candidate
independent risk variants in close proximity to one another representing multiple risk signals in
one locus (20 variants proximal to known risk loci). We then employed tests of causality within a
Mendelian randomization framework to infer functional genomic consequences for genes within
loci of interest in concert with protein-centric network analyses to nominate likely candidates for
follow-up investigation. This report also shows expression network signatures of PD loci to be
heavily brain enriched and different in comparison to Alzheimer’s disease. We also used risk
scoring methods to improve genetic predictions of disease risk, and show that GWAS signals
explain 11-15% of the heritable risk of PD at thresholds below genome-wide significance.
Additionally, these data also suggest genetic correlations relating to risk overlapping with brain
morphology, smoking status and educational attainment. Further analyses of smoking initiation
and cognitive performance relating to PD risk in more comprehensive datasets show complex
etiological links between PD risk and these traits. These data in sum provide the most
comprehensive understanding of the genetic architecture of PD to date, revealing a large
number of additional loci, and demonstrating that there remains a considerable genetic
component of this disease that has not yet been discovered.

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative movement disorder, affecting 1-2%
of the population older than 60 years. PD patients suffer from different combinations of motor
and non-motor symptoms, which ultimately have a drastic effect on daily function and quality of
life’. With the aging population, the social and economic burden of PD will increase dramatically
over the next 30 years, creating a substantial burden on healthcare systems with its prevalence
in some age groups likely to double by 2030"%. Thus far, despite our increasing understanding
of PD, there is no neuroprotective treatment for PD, only treatments that provide some degree
of symptomatic relief.

Since its description in 1817, PD was long thought to have no heritable component; the point of
change in this notion occurred with the discovery of deleterious rare genetic variants in the mid
1990s and early 2000s *°. The identification of rare genetic forms of disease served as the
mainstay of PD genetics for many years; however, over the past decade, collaborative groups
have worked together to investigate the genetic basis of apparently sporadic disease. These
studies have grown from the first study of slightly more than 500 samples yielding no
genome-wide significant risk loci to studies including tens of thousands of samples and defining
dozens of definitive genetic risk factors’®. In the most recent genome wide association study
(GWAS), collaborators found genetic factors that are common in the population make a
substantial contribution to PD, with heritability estimates of 20.9% explained by common
variants 8. That GWAS identified or confirmed 41 risk loci with 48 independent genetic risk
factors, of which 29 were in linkage disequilibrium with cis-expression quantitative trait loci
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(eQTL), suggesting that genetic risk for PD is mediated by the regulation of gene expression to
some degree. Notably, as more risk loci have been resolved, it has become clear that a number
of these risk loci harbor genes that also contain mutations that are likely causal or confer
high-risk for PD. These include SNCA, GBA, LRRK2, VPS13C and GCH1; this phenomenon
further demonstrates the potential strength of GWAS in identifying specific genes and loci with
pathophysiological relevance to PD *%2,

In addition to identifying specific genes or variants involved in PD, GWAS can enhance our
understanding of the mechanism underlying PD pathogenesis. For example, many of the
identified genes within the GWAS loci are involved in the autophagy lysosomal pathway,
highlighting its importance in PD, and providing novel targets for therapeutics development .
Another major importance of GWAS is its ability to map the overall genetic susceptibility for PD
to better quantify risk predictions, which may assist in early detection of PD. An increasing
recognition that early detection is most likely required for successful treatment highlights the
importance of such efforts.

In the current study, we performed the largest-to-date GWAS in PD, including over 11.4M SNPs,
37.7K cases, 18.6K “proxy-cases” and 1.4M controls, aiming to address all the issues above.
Furthermore, we aimed to gain additional insight into nominated risk loci as potential
contributors to actual disease processes via Mendelian randomization (MR) and protein-protein
interaction network analyses''°. We examined if more of the heritable risk can be explained by
using a lower significance threshold for variant inclusion in PD risk profiling. Lastly, we surveyed
genetic correlations between PD and other phenotypes of interest. Implicitly this work highlights
the need for further investigation of the genetic basis of typical apparently sporadic PD, through
future larger GWAS and genome sequencing studies.

METHODS

See Supplementary Methods

RESULTS

Novel loci identified and multiple signals in known loci

We identified a total of 92 genome-wide significant independent association signals through our
meta-analysis and conditional analyses of 37,688 cases, 18,618 proxy-cases and 1,417,791
controls at 11,477,547 SNPs (Figure 1, Table 1, Supplementary Appendices and
Supplementary Tables S1/S2 for details). Of these, 39 signals are new and more than 1MB from

loci described in a previous report by Chang et al. 2017.

To maximize our power for locus discovery we used a single stage design, meta-analyzing all
available summary statistics. We performed a variety of additional analyses to assess the
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compatibility of cohorts comprising the meta-analysis. There was a strong genetic correlation
between previously published datasets and new/proxy-case datasets using LD score regression
(genetic correlation = 0.923, SE = 0.054), consistent with homogeneity of the phenotype. Both
the previous datasets and new datasets when separately meta-analyzed exhibited LD score
regression intercepts close to 1, with 0.988 for the previous datasets and 0.975 for the new
datasets, suggesting that our results are unlikely to be due to population stratification .
Additionally no dataset suffered from substantial lambda inflations, both with regard to raw
lambdas (range for new datasets: 0.898 to 1.061) and lambas scaled to 1000 cases and 1000
controls (lambda,,,, range for new datasets: 0.741 to 1.044). The overall discovery
meta-analysis was also quite well behaved with a raw lambda of 1.072, a scaled lambda, ,, of
1.000 and an LD score intercept of 0.991.

The implementation of conditional and joint analysis (GCTA-COJO,
http://cnsgenomics.com/software/gcta/) analysis with a large study-specific reference genotype
series plus participant level conditional analyses in 23andMe has facilitated the estimation of
signal independence within risk loci ’. If we define multi-signal loci as loci with variants within
250kb of the proximal nominated variants, then we have detected 22 separate genetic risk
factors sharing loci (these can be annotated to 18 nearest gene regions, with 20 (90.9%) of
these proximal risk factors within regions identified by previous GWAS). These include but are
not limited to: two variants in the GAK/TMEM175 region which remain independent of each
other using this method, similarly two variants in the NUCKS1/RAB29 region, two signals within
the SNCA gene, two proximal LRRK2 signals and another three in proximity to GBA. Detailed
summary statistics on all nominated loci can be found in Supplementary Table S2.

Final sensitivity analyses included “leave-one-out” meta-analyses (LOOMA) comparisons of
each dataset to a meta-analysis of the remaining datasets. After adjusting for multiple testing
correction for 17 tests (P < 0.003 for significance) in regressions of up to 92 beta coefficients per
iteration, we noted only 5 departures from significant correlations of betas between the withheld
and included datasets. These non-significant results included only novel loci in the Baylor /
University of Maryland dataset, the Finnish Parkinson’s dataset, the Harvard Biomarker Study
(HBS), the Parkinson’s Disease Biomarkers Program (PDBP) and the Parkinson's Progression
Markers Initiative (PPMI). For these five studies, correlations were significant in the known and
all loci strata of variants. This may be related to statistical power for detecting recently identified
risk variants in this subset of smaller studies. While there may be some trepidation in utilizing
proxy-cases in some instances, our data shows that the UKBB data was significantly
representative of other datasets, with high r* estimates across novel (r* = 0.714, 38 variants),
known (r? = 0.897, 47 variants) and all variants strata (r* = 0.866, 85 variants) in the LOOMAs.

To further examine our study design and data we used a similar paradigm as the LOOMAs to
compare risk beta coefficients to age at onset GWAS coefficients from an unpublished study of
over 28K cases (Blauwendraat et al. 2018 under review, Supplementary Appendix).
Associations between PD risk variants and age at onset are well documented'®'®. We found
strong correlations between betas across novel, known and all loci identified in this report and
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those in the upcoming PD age at onset report, with r?s ranging from 0.27 in the novel variants to
0.684 in the known variants (all P < 0.017, adjusting for 3 tests), suggesting a roughly 1.11 -
1.99 year earlier onset per unit increase in the cumulative log odds ratio across each variant
strata.

Functional causal inferences via QTLs

Using two-sample MR methods, we gained insight into the potential biological underpinnings of
genes underlying nominated risk loci (summarized in Table 2 and Supplementary Tables
S3-S4). Our goal here was to interrogate gene level data for candidates in linkage disequilibrium
under nominated risk peaks to help inform high throughput functional studies. In turn, these
upcoming functional studies will aid in the fine mapping of these loci to putative functional
variants.

We surveyed 349 gene regions in LD with our risk variants of interest, of which 282 genes had
testable QTLs in either expression or methylation datasets we queried. Across four large QTL
datasets in varied tissues of interest from blood to brain regions, stomach, and nerves assayed
for mRNA expression or methylation, we identified 184 of these genes (65.2%) that may have
some functional genomic aspects associated with PD risk. For all 88 genes annotated as
nearest to our 92 SNPs of interest, we could test QTL associations and show that 53 of the 88
genes (60.2%) show some functional consequence via Mendelian randomization. It should be
further noted that 40 loci only exhibited significant QTL associations with a single gene (Table
S2), and in all but seven instances, the nearest gene was representative of the only QTL.
Comparing rates of QTLs between genes nearest our risk variants of interest and the other
genes under the LD-defined association peaks, there is no significant difference in rates of QTL
associations overall (chi-squared P = 0.290). It is interesting to note that the only gene with
significant functional consequences under the rs850738 / FAM171A2 is GRN, a known gene
associated with frontotemporal dementia®. This analysis also nominates TOX3, a candidate
gene for restless leg syndrome as the likely functionally relevant gene under the rs3104783 /
CASC16 association peak?'.

Protein-protein networks and enriched expression pathways

We analyzed protein-protein interaction data using webgestaltR and also gene expression
enrichment data using Functional Mapping and Annotation of Genome-Wide Association
Studies (FUMA) to infer risk networks in PD ">?2, Our goal was to connect genes underlying risk
loci with similar biological functionality.

In our analyses of protein-protein interaction networks, we identified 10 functional networks
sharing ontological and gene content overlaps that are significantly enriched for PD GWAS loci.
Thematically, a majority of the networks identified are associated with response to some type of
stressor or chemical signaling pathways. These significant networks are defined by the GO
terms including: response to stress, response to interferon-gamma, response to organic
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substance, cellular response to heat, regulation of protein stability, immune response-activating
signal transduction, cell activation, regulation of proteasomal protein catabolic process and
regulation of proteasomal ubiquitin-dependent protein catabolic process (see Table 3,
Supplementary Figures S1). Connectivity of the genes comprising these 10 pathways is found in
Supplementary Figure S2.

Additional expression derived analyses from FUMA suggest that among PD risk regions,
expression in various brain regions is highly over represented (Supplementary Figure S3).
Based on our PD GWAS data, all 12 tissues significantly enriched for expression at risk loci are
brain derived, in contrast to what has been seen in Alzheimer’s disease which shows a strong
bias towards blood, spleen, lungs and microglial enrichments 2. We do acknowledge that this
may be somewhat distorted by long-range LD in regions such as APOE. 27 out of 10,651 tested
pathways were enriched for PD associations after multiple test correction (Supplementary Table
S5). Among these 27 enriched pathways, six annotations were related to vacuolar functionality
and autophagy, three pathways for endosomal trafficking, two pathways for catabolism related
functions, and two lysosomal pathways. Novel loci include nominations for at least 4 lysosomal
storage disorder related genes NAGLU, GUSB, GRN and NEU1, a pathway of interest in recent
PD studies®.

For brevity, we focus only on a subset of genes with significant QTL associations via MR that
are also nominated multiple times by our network analyses in the discussion section.

Risk profiling

Utilizing permutation testing to identify optimal P thresholds for variant inclusion in risk profiling
shows that there are more meaningful GWAS variants to discover, with each new locus further
expanding the breadth of biological knowledge and potentially increasing prediction accuracy.
After surveying 11 cohorts from the LOOMAS, best thresholds for inclusion in the PRS were
inclusive of over 4,000 unique variants below the standard P < 5E-08 used in many prior
publications (1.25E-03 for targeted genotyping arrays like NeuroX and 9.85E-05 for standard
GWAS arrays). Results of these analyses are detailed in Table 4 and Figure 2a/2b/2c.

After adjusting for appropriate covariates and accounting for an estimated PD prevalence of
0.5%, we see an overall pseudo r* between PRS and PD to be approximately 3% of the disease
variance accounted for, corresponding to an overall AUC of 0.634 (95% CI 0.626 - 0.641)
across 11 cohorts for the PRS alone'. This AUC for the PRS itself is significantly higher than
had been published in Chang et al. 2017 based on DelLong’s test for correlated receiver
operator curves (ROC) at a p-value of 0.002 (previous PRS-only AUC = 0.624) in the
IPDGC-NeuroX dataset. Using equations from Wray et al. 2010 and heritability estimates from
Keller et al. 2012 our PRS at this AUC explains roughly 11% of the genomic liability in PD risk at
a prevalence of 0.5%; in a high-risk population with a prevalence of 1-2% we could expect to
explain 13-15% of the genomic liability with the PRS alone % .
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For each standard deviation from the population mean of the PRS, we detected risk estimated
to be an odds ratio of 1.763 (from random-effects across all 11 cohorts, beta = 0.567, SE =
0.035 and P = 2.98E-60). When comparing the lowest versus highest quartile of PRS estimated
risk, membership in the highest risk quartile was associated with an odds ratio of 3.51 (95% CI =
3.26 - 3.79) as displayed in Figure 2a. There was some heterogeneity in effect estimates across
studies relating to genotyping platforms with 12 estimates of heterogeneity for all arrays,
targeted arrays (NeuroX) and GWAS genotyping are respectively 70.06%, 0% and 75.65%
(Supplementary Appendix 2). Additionally we carried out a joint analysis of odds ratios across
each decile of PRS per study compared to the remainder of samples. We show an OR of 2.86 in
the 10th risk decile (95% CI 2.60 - 3.16), non-significant ORs around 1 at the 5th and 6th
deciles, and a significant protective OR at the 1st decile of PRS estimated risk, with an OR of
0.41 (95% CI1 0.37 - 0.45). When comparing the top 10% and bottom 10% of PRS across all
samples, we see membership in the top 10% being associated with an OR of 5.83 (95% CI 5.14
- 6.62). We also acknowledge that there might be some effects of selection bias by evaluating P
thresholds per study and then meta-analyzing, although effect estimates all show at least similar
trends and remain significant in random-effects meta-analyses.

Genetic correlations across phenotypes

We analyzed cross-trait genetic correlations between PD and 757 other GWAS datasets of
interest curated by LDhub ?’. After adjusting for multiple testing via false discovery rate, 4
genetic correlations remained significant (Supplementary Table S6). These include positive
correlations with intracranial volume and mean putamen volume from Hribar et al. 2015 (for the
former RG = 0.351, SE = 0.077, P = 4.64E-06 and for the latter RG = 0.248, SE = 0.064, P =
9.55E-05 respectively) 2. We also note significant negative correlations between current
tobacco use and PD as well as “academic qualifications: NVQ or HND or HNC or equivalent”
and PD in the UKBB dataset, suggesting that there is some mitigating effect for smoking status
and educational attainment as they relate to PD risk (for the former RG = -0.134, SE = 0.034, P
= 7.92E-05 and for the latter RG = -0.169, SE 0.045, P = 2.00E-04 respectively) %.

After noting these significant genetic correlations, we utilized MR methods to infer causality,
using these phenotypes as exposures. The inverse variance weighted method was used to
combine Wald ratios (or in the case of educational attainment by “Qualifications: NVQ or HND or
HNC or equivalent”, a single Wald ratio was used since only 1 variant passed our pre-analysis
clumping threshold of r*=0.001, 10,000 kb) to ascertain significance of putative causal
associations. Intracranial volume could not be tested due to the stringent nature of our
pre-analysis filtering for this phase of MR. When these thresholds were relaxed to less stringent
P thresholds for inclusion of SNPs from the intracranial volume GWAS, no significant
associations were detected. In an analysis incorporating 16 variants of interest, current tobacco
smoking status was not causally associated with PD risk (P > 0.05), suggesting shared genetic
factors but no likely causative mechanism in a reduced SNP set from MR base. Educational
attainment, quantified by attaining qualifications of NVQ or HND or HNC was associated with a
decreased risk of PD (beta =-5.971, SE = 1.847, P = 0.001), although this should be viewed
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with some guarded optimism as this analysis only includes a single variant (rs968050) and
therefore sensitivity analyses such as MR Egger and radial analyses to further dissect the
association are not possible. To note, the variant of interest in this case, rs968050, is implicated
as a proxy for a genome-wide significant locus associated with bipolar disorder further
complicating any possible association *. Putamen volume exhibited a small but significant risk
association in inverse variance weighted MR analysis (beta = 7.81E-04, SE = 3.07E-04, P =
0.011). In addition, radial analyses using both inverse variance weighted and MR Egger models
suggest significant heterogeneity in the risk estimates (Cochran’s test for heterogeneity, P <
0.001 for tests of heterogeneity across variants), decreasing the likelihood of a truly causative
association between putamen volume and PD, with likely violations of the assumptions of the
MR paradigm. In radial analyses, one outlier variant in the putamen volume data was identified,
rs62097986 (see Supplementary Figure S4). After excluding this variant, we saw a persistent
association via inverse variance weighting (beta = 0.001, SE = 1.28E-04, P = 8.35E-16)
although the MR Egger estimate was not significant (P > 0.05). This evidence suggests that
putamen volume may have a causal relationship with PD, although more detailed future
research is needed for a definitive answer. We also evaluated the possibility of reverse causality
for these four GWAS, using our own PD derived summary statistics as an exposure. In this
reverse causality analysis, no iterations of the inverse variance weighted or MR Egger analyses
showed any significant associations (all P > 0.05).

Additional smoking analyses using bi-directional GSMR and expanded exposure GWAS data
provided interesting results. These include no significant association signal in either direction for
current smoking (beta = -0.032, SE = 0.031, P = 0.302 at 72 SNPs for current smoking status as
an exposure for PD and beta = 0.016, SE = 0.010, P = 0.113 at 136 SNPs for the reverse). For
smoking initiation (status as ever regularly smoked), we see a protective association when using
smoking as an exposure for PD (beta = -0.081, SE = 0.034, P = 0.016 at 180 SNPs) although
this does not pass multiple test correction after other Mendelian randomization analyses
described earlier. When looking in the reverse direction, the association for PD as an exposure
for smoking initiation is significant and is contrary to what is commonly expected based on the
results described above. We see that PD is a risk factor with a very small but significant effect
estimate associated with smoking initiation (beta = 0.027, SE = 0.006, P = 5.03E-06 at 136
SNPs), at roughly one third of the estimated effect size of its paired association in the opposite
direction.

In our expanded Mendelian randomization analysis of recently published GWAS focusing on
educational attainment and cognitive performance, we note interesting associations related to
putative causal relationships between traits. Educational attainment is associated with risk of PD
(beta = 0.125, SE = 0.038, P = 1.16E-03 at 549 SNPs) while a much smaller effect size but
more significant result exists in the reverse direction (beta = 0.010, SE = 0.002, P = 2.38E-05 at
125 SNPs). Cognitive performance is a relatively large effect and significant risk factor for PD
(beta = 0.242, SE = 0.042, P = 5.88E-09 at 197 SNPs) in our analyses, and the association in
the reverse direction is not significant (P = 0.287 at 129 SNPs). The additional MR analyses of
smoking and education exposures are summarized in Supplementary Figure S5.
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DISCUSSION
Risk genes highlight new biology and candidate therapeutic targets

A key yield of GWAS is widening the scope of our biological knowledge base for diseases of
interest, as well as making connections across diseases and other biological processes. We
have identified 92 independent common genetic risk factors for a disease that was previously
thought to be almost entirely environmental in its etiology a few decades ago. Through
two-sample MR and network analysis of genes in linkage disequilibrium under association
peaks, we have also nominated most likely regional targets for follow-up functional screening
studies.

Bcl2-associated athanogene 3 (BAG3) is a candidate gene containing two risk signals on
chromosome 10. BAG3 is a component of the proteolytic stress response and protein stability
networks identified. It is also a consistently significant QTL across multiple datasets including
increased risk of PD associated with elevated expression of BAG3 in blood as well as increased
risk associated with decreased expression in muscle and elevated methylation in blood.

GCH1, HLA-DRB5 and SNCA have been implicated in a network that may have some utility in
drug development and neuroinflammatory studies, relating to response to interferon gamma.
These three well-studied genes also comprise networks associated to stress responses and
responses to organic substances (i.e. chemical stimuli and likely cytokines as per
Supplementary Figure S1). GCH1 expression in the caudate basal ganglia and tibial nerve
tissues exhibits a strong inverse association with PD risk, while increased expression in blood
and the cerebellum are associated with increased risk of PD. GCH1 is GTP cyclohydrolase, a
rate limiting enzyme co-factor for dopamine synthesis and it is biologically plausible that lower
GCH1 could increase risk PD. Coding mutations in GCH1 cause dopa-responsive dystonia, and
have also been implicated as PD risk variants'. Increased methylation at two probes at
HLA-DRBS5 are associated with increased PD risk. Decreased activity in terms of both
methylation and expression at SNCA are associated with PD risk in blood as well as expression
in the basal caudate ganglia.

PAM and BRIP1 are novel loci identified in this report and both involved in networks related to
stress and stimuli response on a cellular level. Peptidylgycine a-amidating monooxygenase
(PAM) functions in neuropeptide secretion and interacts with copper deficiencies causing
temperature dysregulation, seizures and anxiety in mouse models®'. BRIP1, also known as
BACH1, is associated with autosomal dominant breast cancers, ovarian cancers and Fanconi
anemia®*. This gene is a potential target for research into neuroprotective compounds as it is
associated with oxidative stress and activation of nuclear factor erythroid 2-related factor 2
(Nrf2)*®. Decreased expression of PAM is associated with PD risk across all cerebellar brain
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regions and in all blood expression datasets. Increased expression of BRIP1 in the GTEx basal
ganglia tissues is associated with increased risk of PD.

FYN is a novel risk locus; CTSB, DDRGK1 and MAP3K14 are previously described risk loci, all
are involved in response pathways described above. The FYN region identified as a novel PD
risk locus in this report has been implicated in microglial inflammatory response *¢. Additionally,
FYN in an activated state is known to phosphorylate a-synuclein and play a key role in
dopamine trafficking . FYN has also been implicated as a MAPT kinase involved in
Alzheimer's disease *°. FYN, CTSB and MAP3K14 all share immune network connections.
MAP3K14 is also involved in interferon gamma response and appears in multiple overlapping
enriched networks along with DDRGK1 and FYN. Methylation levels at FYN are inversely
associated with PD risk while MAP3K14 shows the opposite directionality. CTSB and DDRGK1
show increased risk of PD associated with blood expression levels, while CTSB also shows the
inverse of that association in brain, nerve and stomach, and a subset of basal ganglia tissues *'.

Of additional interest is GAK and TMEM175 both exhibiting significant associations with gene
expression in the tibial nerve, and in opposite directions. This region has been of high interest in
drug development but is complicated due to the independence of risk loci and the two genes
sharing a promoter (Jinn et al. 2018, under review). Although, the effect size for the association
at TMEM175 (p = -0.3707, SE = 0.0582) has an absolute magnitude of effect almost twice that
of GAK (p = 0.1465, SE = 0.0637). Also, between the two genes, TMEM175 is the only one that
is also associated with causal changes to expression in the cortical regions of the brain.

In its current state, the data presented in Tables 2 and 3 plus Supplementary Tables S3-S5 are
suggestive or confirmatory of both known and novel biological pathways within PD etiology. It is
of particular interest that this method can shed light on two nearby, but independent loci, such
as GAKITMEM175. While both variants remained significant and independent across analyses
in this and in previous work, the MR analysis suggested more widespread impact in disease
etiology associated with functional consequences related to the risk signals at TMEM175 coding
variation in tissues of interest as opposed to intronic variation in GAK . Additionally, this type of
integrative data analysis has supported multiple novel loci that might have future therapeutic
potential such as BRIP1, PAM and FYN. Significant functional insights described above are also
graphically summarized with regard to significance (FDR adjusted P) and directionality across
different tissues in Supplementary Figure S6.

Using LD score regression for cross trait analyses, we have highlighted new possible pathways
of interest and confirmed previous hypotheses. The use of putamen and intracranial volumes as
biomarkers may prove efficacious in future multi-modal modeling efforts. We also suggest at
least some degree of possible functional connectivity in a causal pathway relating educational
attainment and/or putamen volume to PD risk. The bi-directional GSMR results suggest a
complex etiological connection between smoking initiation and PD as well as a strong
association between cognitive performance and PD, each possibly relevant to multiple different
mechanisms during disease manifestation.
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Increased prediction strength and future prospects in GWAS

From a genetic perspective, we have succeeded in improving our predictive efforts by simply
moving P thresholds and increasing sample sizes as has been shown previously for other
complex traits and common diseases with a polygenic architecture. Current AUC estimates from
our PRS suggest we have explained between 11-15% of Parkinson’s genetic liability at an AUC
approaching 64% from only common SNP variation. This is accomplished through current
GWAS applications by including potential risk factors at up to P < 1E-03 in some datasets and
using over 4,000 semi-independent risk variants. The same calculations provide a ceiling for
predictions derived from heritable risk in PD at a maximum possible AUC of roughly 85%. These
calculations coupled with the biological insights provided above suggest that GWAS and related
methods have a great deal more insight to provide and should further help move us down a path
towards quality etiologic-based interventions and diagnostics. Put simply, more samples, more
data, more understanding, and more potential.

Current PRS derived predictive models, while explaining a respectable amount of disease
liability, do not have positive predictive values that would be feasible to screen large
populations. At current levels, on a population scale there would be roughly 14 false positives
per real case using genetic data alone at an estimated prevalence of 0.5%. To improve on this,
adding multimodal data such as smell tests, family history and similar low cost / non-invasive
factors could be useful and one day provide a strong tool for prospective study and trial
recruitment **. As an additional note, current collaborative efforts underway to utilize large-scale
genome sequencing and nonlinear machine learning methods to build genetic classifiers may
be able to push beyond the predictive boundaries detailed in this manuscript through the
incorporation of rare genetic variation.

Limitations of the study

While we have made progress in assessing genetic risk factors for PD in this study, there are a
number of limitations to our study.

One of the limitations of this study is the use of multiple imputation panels, due to logistic
constraints. Adding datasets from non-European populations would be helpful to further improve
our granularity in association testing and ability to fine-map loci through integration of more
variable LD signatures. Additionally, ancestry specific PD linkage disequilibrium reference
panels of substantial size such as those for Ashkenazi Jewish participants at 23andMe will help
us unravel further levels of detail in interesting loci such as GBA and LRRK2. This may be
particularly evident at strongly associated loci such as LRRK2 and GBA whose LD patterns may
be quite variable within European populations, accentuating the possible influence of LD
reference series on conditional analyses in some cases*’. Moreover, larger QTL studies and
PD-specific network data from large scale cellular screenings would allow us to build more
robust functional inference particularly when many of our QTL associations are hampered by
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both sample size and cis-SNP density. One major limitation in particular is the implementation of
QTL analyses that only include one variant per cis-QTL tested. This can affect MR results by not
only decreasing power due to lower variance explained, but also by preventing the use of tests
such as MR egger or weighted median, which can be used to ascertain the likelihood of
violating the inherent assumptions of MR.

To overcome these weaknesses and push the field forward, there are a few solutions that we
should work toward. First of all, data transparency and openness, allowing all researchers to
share participant-level data in a secure environment as this would facilitate inclusiveness and
uniformity in analyses while maintaining the confidentiality of study participants. Also, the use of
genome sequencing technologies could improve this effort with greater accuracy for rarer
variants that are more difficult to impute, and better capture structural variations, although due
to the need for very large sample sizes for analysis of rarer variants, well-powered analyses are
likely quite far in the future. Outreach to underrepresented and diverse ancestry populations to
build additional collaborations and include samples from non-European backgrounds could
prove extremely valuable. Finally, current solutions such as federated (collaborative) learning
methods could be applied to genomics to make strides for both the GWAS and machine
learning approaches on a global scale while still maintaining privacy of individual sites when
needed**®. Tools like federated learning approaches could be key in building global analytics
communities and more productive collaborations in genomics despite growing privacy
restrictions. It is our goal that the next global scale efforts in PD genetics will be even larger,
more open, better harmonized, and much more inclusive.
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Table 1: Novel loci associated with Parkinson's disease.
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Table 2: Summary of significant functional inferences from QTL associations via Mendelian

randomization for nominated genes of interest.
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GO ID

GO:1900034
GO:0034341

GO:0061136
GO:0032434
GO:0034605
GO:0031647

GO:0010033

GO:0006950

GO0:0002757

GO:0001775

Table 3: Protein network analysis for linked genes under association peaks.

GO Name

regulation of cellular response to heat
response to interferon-gamma

regulation of proteasomal protein catabolic process
regulation of proteasomal ubiquitin-dependent protein catabolic process
cellular response to heat
regulation of protein stability

response to organic substance

response lo stress

immune response-activating signal transduction

cell activation

Total number
of genes in the
network

75
139

140
1058
107
213

2547

3249

401

798

Number of nominated
genes within the
network from
Parkinson's loci

7

8

@ N~ ®

35

41

7.97E-07
5.05E-06

5.33E-06
7.73E-06
8.76E-06
1.57E-05

1.74E-05

1.78E-05

1.91E-05

2.77E-05

P, FDR
adjusted

0.012
0.028

0.026
0.026
0.026
0.032

0.032

0.032

0.032

0.042

Genes comprising Parkinson's sub-network

NUPL2, HSPA1A, HSPA1L, MAPT, CCAR2, CAMK2D, BAG3

GCH1, HLA-DQA1, HLA-DRA, HLA-DRBS, SNCA, TRIM26, CAMKZD,
PARPY

ARIH2, USP19, LRRKZ, HSPA1A, UBQLN4, CCAR2, DDRGK1, BAGE
ARIH2, LRRK2, HSPA1A, UBQLN4, CCAR2, DDRGK1, BAG6
NUPL2, HSPA1A, HSPA1L, MAPT, CCAR2, CAMKZD, BAG3

USP19, HSPA1A, CCAR2, SNCA, CCT3, USP4, BAGS, HIP1R, BAG3

USP19, LRRKZ, CTSEB, CYLD, CNOT1, FYN, GCH1, RABGEF1, HLA-
DQA1, HLA-DRA, HLA-DRBS5, FOXA1, HSPA1A, HSPAIL, LMNA,
NFKB2, PAM, ATPEVOAT, POLR2A, PRKARZA, NOD2, P2RY12,

DDRGKT1, SNCA, STX4, TIAL1, TUFM, UBTF, TRIM26, BAGS,
CAMK2D, PARPY, BRIP1, ITGA8, MAP3K14

USP19, NUPL2, ERCCS8, CLIC1, LRRKZ2, CTSB, DTX3L, CYLD,
VKORC1L1, DYRK1A, CNOT1, FYN, GCH1, LAT, RABGEF1, HLA-
DQA1, HLA-DRA, HLA-DRBS, HSPA1A, HSPA1L, LMNA, MAPT,
NFKB2, PAM, POLR2A, PRKARZ2A, CCAR2, NOD2, P2RY12, DDRGK1,
SNCA, STX4, TIAL1, TRIM26, VKORC1, BAG6, CAMK2D, PARPS,
BRIP1, TRIM15, BAG3
CTSB, CYLD, FCGR2A, FYN, LAT, RABGEF1, HLA-DQA1, HLA-DRA,
HLA-DRBS, HSPA1A, NOD2Z, TRIM15
CLIC1, CYLD, FYN, LAT, RABGEF1, HLA-DQA1, HLA-DRA, HLA-
DRBS5, MAPT, NFKBZ2, SATB1, NOD2, P2RY12, SNCA, STX4, GBF1,
MAP3K14



Table 4: Summary of genetic predictive model performance.

Study
Finnish Parkinson’s
Harvard Biomarker Study!
McGill Parkinson's
IPOGC - Neurox!

Oslo Parkinson's Disease Study
Parkinson's Disease Biomarker's Program!
Parkinson's Progression Markers Initiative!

Baylor College of Medicine | University of Maryland
Spanish Parkinson's
Tubingen Parkinson's Disease cohorl {CauragePD)
Vance (dbGap phs000394)8
All arrays$
Targeted arrays$
GWAS arrays$

7.00E-07
1.50E-04
3.50E-04
1.50E-03
2.00E-04
5.50E-06
1.20E-08
2 49E-05
412E-05
2.55E-08
1.00E-04
7.69E-04
1.25E-03
9.85E-05

pseudo R2
Best P threshold from PRS*

0.038
0.031
0.040
0.029
0.028
0.039
0.041
0.044
0.01%
Q.07
0.044
0.03G
0.03¢
0.02¢

OR
187
173
1.85
173
1.66
1.88
201
210
153
148
2.08
1.76
178
175

Beta
0.628
0.551
0.617
0.549
0.508
0.638
0.69%
0.741
0.423
0.392
0.731
0.567
0.558
0.561

SE
0.084
0.073
0.081
0.022
0.074
0.088
0.122
0.104
0.039
0.062
0.092
0.035
0.021
0.053

P
8.84E14
6.52E-14
1.10E-23

212E-133
5.00E-12
6.89E-13
9.65E-09
G.03E-13
1.21E-27
2.62E-10
2.08E-15
2.88E-80

1.67E-1683
1.13E-26

OR, highest
quartile PRS
476
3.31
4.28
3.66
3.84
5.70
4.20
7.31
2.08
270
4.83
.51
3.66
337

95% CI, highest

quartile PRS
3.19-717
2.30-4.80
3.13-5.90
3.28-409
2.63-565
3.57-9.26
2.41-7.50
418 -13.63
2.43-266
1.94.378
3.19-7.41
3.26-3.79
3.31-4.04
3.00-3.80

N SNPs Nsamples AUC 95% Cl (DelLong) Sensitivity

264
951
2399
2137
1711
398
29
707
810
380
1231
4162
2480
2888

878
999
1487
11243
938
794
528
964
3443
1208
919
23402
13564
9838

0.665
0.638
0.660
0 640
0.642
0.672
0.645
0.662
0.611
0.602
0.662
0.634
0.640
0.627

0629 - 0.701
0.604 - 0.673
0.6832 - 0.688
0 630 - 0.645
0.607 - 0.677
0634 -0.710
0.594 - 0.695
0642 -0.721
0.592 - 0.630
0.571 - 0.635
0.625-0.701
0.626 - 0.641
0.630 - 0.648
0815 - 0.638

0624
08677
0.677
0638
0.565
0602
0842
0572
0.461
0.803
0.742
0.608
0.636
0.588

0.583

0.565
0.594

value (PPV)
0577
0.630
0.508
0.575
0626
0.774
0777
0.889
0710
0.800
0.753
0.623
0.587
0658

wvalue (NPV)
0685
0807
0.738
0623
0.593
0.485
0.430
0299
0.451
0.587
0.481
0.567
0.605
0.521

Positive predictive Negative predictive Balanced

accuracy
0.633
0616
0.628
0.599
0.608
0.841
0618
0645
0.581
0573
0619
0.585
0.600
0.591

Notes: * denotes RZ approximation adjusted for an estimated prevalence of 0.5%, equivalent to roughly half of the unadjusted R2 estimates for the PRS. | denotes targeted genotyping series using NeuroX arrays. § denotes effect estimates and summaries from either random effects meta-
analysis or weighted means, although for N SNPs it is the number of unique SNPs across all studies. 12 estimates of helerogeneity for all arrays, targeted arrays and GWAS genotyping are respectively 70.06%, 0% and 75.65%. All calculations and reported statistics include only the PRS and
no other parameters after adjusting for principal compenents 1-5, age and sex when possible



Table 5: Significant genetic correlations across traits.

Trait of interest
Intracranial volume
Current tobacco smoking
Mean Putamen
Qualifications: NVQ or HND or HNC or equivalent

PMID
25607358
Not available (UKBB)
25607358
Mot available {UKBB)

Genetic
correlation,
RG

0.351

-0.134
0248
-0.169

SE, RG
0.077
0.034
0.064
0.045

Z,RG
4580
-3.947
3.902

-3.726

P,RG

4.64E-06
7.92E-05
9.55E-05
2.00E-04

P,FDR
adjusted

3.51E-03
241E-02
2 41E-02
3.79E-02

Observed H2
0.186
0.055
0.282
0015

SE, H2
0.045
0.003
0.047
0.002

H2 intercept
1.003
1.014
0952
1.011

SE, H2
intercept

0.007
0,010
0.007
0007

Cross trait intercept SE, Cross trait intercept

-0.013 0.005
0.004 0.007
-0.007 0.006

0.005 0.005



FIGURES

Figure 1: Iris plots of the current meta-GWAS data. Radius position denotes -log10 converted
p-values (truncated for display) with the outer ring denoting chromosomal positions. Red points
indicate SNPs reaching genome-wide significance (P < 5E-08.)




Odds ratios & 95% Cls, log 10 scaled

Figure 2: Predictive model details.

A. Odds ratios by quartile of PRS.
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B. Odds ratios by decile of PRS, comparing each decle to all others.
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True positive fraction

C. PRS derived area under the curve estimates for the predictive models from receiver operator
curve analyses.
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