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ABSTRACT 
 



We performed the largest genetic study of Parkinson’s disease to date, involving analysis of 
11.4M SNPs in 37.7K cases, 18.6K ‘proxy-cases’ and 1.4M controls, discovering 39 novel risk 
loci. In total, we identified 92 putative independent genome-wide significant signals including 53 
at previously published loci. Next, we dissected risk within these loci, identifying 22 candidate 
independent risk variants in close proximity to one another representing multiple risk signals in 
one locus (20 variants proximal to known risk loci). We then employed tests of causality within a 
Mendelian randomization framework to infer functional genomic consequences for genes within 
loci of interest in concert with protein-centric network analyses to nominate likely candidates for 
follow-up investigation. This report also shows expression network signatures of PD loci to be 
heavily brain enriched and different in comparison to Alzheimer’s disease. We also used risk 
scoring methods to improve genetic predictions of disease risk, and show that GWAS signals 
explain 11-15% of the heritable risk of PD at thresholds below genome-wide significance. 
Additionally, these data also suggest genetic correlations relating to risk overlapping with brain 
morphology, smoking status and educational attainment. Further analyses of smoking initiation 
and cognitive performance relating to PD risk in more comprehensive datasets show complex 
etiological links between PD risk and these traits. These data in sum provide the most 
comprehensive understanding of the genetic architecture of PD to date, revealing a large 
number of additional loci, and demonstrating that there remains a considerable genetic 
component of this disease that has not yet been discovered.  
 
INTRODUCTION 
 
Parkinson’s disease (PD) is a common neurodegenerative movement disorder, affecting 1-2% 
of the population older than 60 years. PD patients suffer from different combinations of motor 
and non-motor symptoms, which ultimately have a drastic effect on daily function and quality of 
life​1​. With the aging population, the social and economic burden of PD will increase dramatically 
over the next 30 years, creating a substantial burden on healthcare systems with its prevalence 
in some age groups likely to double by 2030​1​,​2​3​. Thus far, despite our increasing understanding 
of PD, there is no neuroprotective treatment for PD, only treatments that provide some degree 
of symptomatic relief. 
 
Since its description in 1817, PD was long thought to have no heritable component; the point of 
change in this notion occurred with the discovery of deleterious rare genetic variants in the mid 
1990s and early 2000s ​4–6​. The identification of rare genetic forms of disease served as the 
mainstay of PD genetics for many years; however, over the past decade, collaborative groups 
have worked together to investigate the genetic basis of apparently sporadic disease. These 
studies have grown from the first study of slightly more than 500 samples yielding no 
genome-wide significant risk loci to studies including tens of thousands of samples and defining 
dozens of definitive genetic risk factors​7,8​. In the most recent genome wide association study 
(GWAS), collaborators found genetic factors that are common in the population make a 
substantial contribution to PD, with heritability estimates of 20.9% explained by common 
variants ​8​. That GWAS identified or confirmed 41 risk loci with 48 independent genetic risk 
factors, of which 29 were in linkage disequilibrium with cis-expression quantitative trait loci 
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(eQTL), suggesting that genetic risk for PD is mediated by the regulation of gene expression to 
some degree. Notably, as more risk loci have been resolved, it has become clear that a number 
of these risk loci harbor genes that also contain mutations that are likely causal or confer 
high-risk for PD. These include ​SNCA, GBA, LRRK2, VPS13C ​and ​GCH1​; this phenomenon 
further demonstrates the potential strength of GWAS in identifying specific genes and loci with 
pathophysiological relevance to PD ​5,9–12​.  
 
In addition to identifying specific genes or variants involved in PD, GWAS can enhance our 
understanding of the mechanism underlying PD pathogenesis. For example, many of the 
identified genes within the GWAS loci are involved in the autophagy lysosomal pathway, 
highlighting its importance in PD, and providing novel targets for therapeutics development ​13​. 
Another major importance of GWAS is its ability to map the overall genetic susceptibility for PD 
to better quantify risk predictions, which may assist in early detection of PD. An increasing 
recognition that early detection is most likely required for successful treatment highlights the 
importance of such efforts.  
 
In the current study, we performed the largest-to-date GWAS in PD, including over 11.4M SNPs, 
37.7K cases, 18.6K “proxy-cases” and 1.4M controls, aiming to address all the issues above. 
Furthermore, we aimed to gain additional insight into nominated risk loci as potential 
contributors to actual disease processes via Mendelian randomization (MR) and protein-protein 
interaction network analyses​14​,​15​. We examined if more of the heritable risk can be explained by 
using a lower significance threshold for variant inclusion in PD risk profiling. Lastly, we surveyed 
genetic correlations between PD and other phenotypes of interest. Implicitly this work highlights 
the need for further investigation of the genetic basis of typical apparently sporadic PD, through 
future larger GWAS and genome sequencing studies. 
 
 
METHODS 
 
See Supplementary Methods 
 
RESULTS 
 
Novel loci identified and multiple signals in known loci 
 
We identified a total of 92 genome-wide significant independent association signals through our 
meta-analysis and conditional analyses of 37,688 cases, 18,618 proxy-cases and 1,417,791 
controls at 11,477,547 SNPs (Figure 1, Table 1, Supplementary Appendices and 
Supplementary Tables S1/S2 for details). Of these, 39 signals are new and more than 1MB from 
loci described in a previous report by Chang ​et al​. 2017. 
 
To maximize our power for locus discovery we used a single stage design, meta-analyzing all 
available summary statistics. We performed a variety of additional analyses to assess the 
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compatibility of cohorts comprising the meta-analysis. There was a strong genetic correlation 
between previously published datasets and new/proxy-case datasets using LD score regression 
(genetic correlation = 0.923, SE = 0.054), consistent with homogeneity of the phenotype. Both 
the previous datasets and new datasets when separately meta-analyzed exhibited LD score 
regression intercepts close to 1, with 0.988 for the previous datasets and 0.975 for the new 
datasets, suggesting that our results are unlikely to be due to population stratification ​16​. 
Additionally no dataset suffered from substantial lambda inflations, both with regard to raw 
lambdas (range for new datasets: 0.898 to 1.061) and lambas scaled to 1000 cases and 1000 
controls (lambda​1000​, range for new datasets: 0.741 to 1.044). The overall discovery 
meta-analysis was also quite well behaved with a raw lambda of 1.072, a scaled lambda​1000​ of 
1.000 and an LD score intercept of 0.991. 
 
The implementation of conditional and joint analysis (GCTA-COJO, 
http://cnsgenomics.com/software/gcta/) analysis with a large study-specific reference genotype 
series plus participant level conditional analyses in 23andMe has facilitated the estimation of 
signal independence within risk loci ​17​. If we define multi-signal loci as loci with variants within 
250kb of the proximal nominated variants, then we have detected 22 separate genetic risk 
factors sharing loci (these can be annotated to 18 nearest gene regions, with 20 (90.9%) of 
these proximal risk factors within regions identified by previous GWAS). These include but are 
not limited to: two variants in the ​GAK/TMEM175​ region which remain independent of each 
other using this method, similarly two variants in the ​NUCKS1/RAB29​ region, two signals within 
the ​SNCA​ gene, two proximal ​LRRK2​ signals and another three in proximity to ​GBA​. Detailed 
summary statistics on all nominated loci can be found in Supplementary Table S2. 
 
Final sensitivity analyses included “leave-one-out” meta-analyses (LOOMA) comparisons of 
each dataset to a meta-analysis of the remaining datasets. After adjusting for multiple testing 
correction for 17 tests (P < 0.003 for significance) in regressions of up to 92 beta coefficients per 
iteration, we noted only 5 departures from significant correlations of betas between the withheld 
and included datasets. These non-significant results included only novel loci in the Baylor / 
University of Maryland dataset, the Finnish Parkinson’s dataset, the Harvard Biomarker Study 
(HBS), the Parkinson’s Disease Biomarkers Program (PDBP) and the Parkinson's Progression 
Markers Initiative (PPMI).  For these five studies, correlations were significant in the known and 
all loci strata of variants. This may be related to statistical power for detecting recently identified 
risk variants in this subset of smaller studies. While there may be some trepidation in utilizing 
proxy-cases in some instances, our data shows that the UKBB data was significantly 
representative of other datasets, with high r​2​ estimates across novel (r​2​ = 0.714, 38 variants), 
known (r​2​ = 0.897, 47 variants) and all variants strata (r​2​ = 0.866, 85 variants) in the LOOMAs. 
 
To further examine our study design and data we used a similar paradigm as the LOOMAs to 
compare risk beta coefficients to age at onset GWAS coefficients from an unpublished study of 
over 28K cases (Blauwendraat et al. 2018 under review, Supplementary Appendix). 
Associations between PD risk variants and age at onset are well documented​18,19​. We found 
strong correlations between betas across novel, known and all loci identified in this report and 
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those in the upcoming PD age at onset report, with r​2​s ranging from 0.27 in the novel variants to 
0.684 in the known variants (all P < 0.017, adjusting for 3 tests), suggesting a roughly 1.11 - 
1.99 year earlier onset per unit increase in the cumulative log odds ratio across each variant 
strata. 
 
Functional causal inferences via QTLs 
 
Using two-sample MR methods, we gained insight into the potential biological underpinnings of 
genes underlying nominated risk loci (summarized in Table 2 and Supplementary Tables 
S3-S4). Our goal here was to interrogate gene level data for candidates in linkage disequilibrium 
under nominated risk peaks to help inform high throughput functional studies. In turn, these 
upcoming functional studies will aid in the fine mapping of these loci to putative functional 
variants.  
 
We surveyed 349 gene regions in LD with our risk variants of interest, of which 282 genes had 
testable QTLs in either expression or methylation datasets we queried. Across four large QTL 
datasets in varied tissues of interest from blood to brain regions, stomach, and nerves assayed 
for mRNA expression or methylation, we identified 184 of these genes (65.2%) that may have 
some functional genomic aspects associated with PD risk. For all 88 genes annotated as 
nearest to our 92 SNPs of interest, we could test QTL associations and show that 53 of the 88 
genes (60.2%) show some functional consequence via Mendelian randomization. It should be 
further noted that 40 loci only exhibited significant QTL associations with a single gene (Table 
S2), and in all but seven instances, the nearest gene was representative of the only QTL. 
Comparing rates of QTLs between genes nearest our risk variants of interest and the other 
genes under the LD-defined association peaks, there is no significant difference in rates of QTL 
associations overall (chi-squared P = 0.290). It is interesting to note that the only gene with 
significant functional consequences under the rs850738 / ​FAM171A2​ is ​GRN​, a known gene 
associated with frontotemporal dementia​20​. This analysis also nominates ​TOX3​, a candidate 
gene for restless leg syndrome as the likely functionally relevant gene under the rs3104783 / 
CASC16​ association peak​21​. 
 
Protein-protein networks and enriched expression pathways 
 
We analyzed protein-protein interaction data using webgestaltR and also gene expression 
enrichment data using ​Functional Mapping and Annotation of Genome-Wide Association 
Studies (​FUMA) to infer risk networks in PD ​15,22​. Our goal was to connect genes underlying risk 
loci with similar biological functionality. 
 
In our analyses of protein-protein interaction networks, we identified 10 functional networks 
sharing ontological and gene content overlaps that are significantly enriched for PD GWAS loci. 
Thematically, a majority of the networks identified are associated with response to some type of 
stressor or chemical signaling pathways. These significant networks are defined by the GO 
terms including: response to stress, response to interferon-gamma, response to organic 
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substance, cellular response to heat, regulation of protein stability, immune response-activating 
signal transduction, cell activation, regulation of proteasomal protein catabolic process and 
regulation of proteasomal ubiquitin-dependent protein catabolic process (see Table 3, 
Supplementary Figures S1). Connectivity of the genes comprising these 10 pathways is found in 
Supplementary Figure S2.  
 
Additional expression derived analyses from FUMA suggest that among PD risk regions, 
expression in various brain regions is highly over represented (Supplementary Figure S3). 
Based on our PD GWAS data, all 12 tissues significantly enriched for expression at risk loci are 
brain derived, in contrast to what has been seen in Alzheimer’s disease which shows a strong 
bias towards blood, spleen, lungs and microglial enrichments ​23​. We do acknowledge that this 
may be somewhat distorted by long-range LD in regions such as ​APOE​. 27 out of 10,651 tested 
pathways were enriched for PD associations after multiple test correction (Supplementary Table 
S5). Among these 27 enriched pathways, six annotations were related to vacuolar functionality 
and autophagy, three pathways for endosomal trafficking, two pathways for catabolism related 
functions, and two lysosomal pathways.  Novel loci include nominations for at least 4 lysosomal 
storage disorder related genes ​NAGLU​, ​GUSB​, ​GRN​ and ​NEU1​, a pathway of interest in recent 
PD studies​24​. 
 
For brevity, we focus only on a subset of genes with significant QTL associations via MR that 
are also nominated multiple times by our network analyses in the discussion section. 
 
Risk profiling 
 
Utilizing permutation testing to identify optimal ​P​ thresholds for variant inclusion in risk profiling 
shows that there are more meaningful GWAS variants to discover, with each new locus further 
expanding the breadth of biological knowledge and potentially increasing prediction accuracy. 
After surveying 11 cohorts from the LOOMAs, best thresholds for inclusion in the PRS were 
inclusive of over 4,000 unique variants below the standard P < 5E-08 used in many prior 
publications (1.25E-03 for targeted genotyping arrays like NeuroX and 9.85E-05 for standard 
GWAS arrays). Results of these analyses are detailed in Table 4 and Figure 2a/2b/2c.  
 
After adjusting for appropriate covariates and accounting for an estimated PD prevalence of 
0.5%, we see an overall pseudo r​2​ between PRS and PD to be approximately 3% of the disease 
variance accounted for, corresponding to an overall AUC of 0.634 (95% CI 0.626 - 0.641) 
across 11 cohorts for the PRS alone​1​. This AUC for the PRS itself is significantly higher than 
had been published in Chang et al. 2017 based on DeLong’s test for correlated receiver 
operator curves (ROC) at a p-value of 0.002 (previous PRS-only AUC = 0.624) in the 
IPDGC-NeuroX dataset. Using equations from Wray ​et al​. 2010 and heritability estimates from 
Keller et al. 2012 our PRS at this AUC explains roughly 11% of the genomic liability in PD risk at 
a prevalence of 0.5%; in a high-risk population with a prevalence of 1-2% we could expect to 
explain 13-15% of the genomic liability with the PRS alone ​25,26​ . 
 

https://paperpile.com/c/yCAtPB/yCEYd
https://paperpile.com/c/yCAtPB/xYhO
https://paperpile.com/c/yCAtPB/IpngX
https://paperpile.com/c/yCAtPB/MJBmk+bpaDz


For each standard deviation from the population mean of the PRS, we detected risk estimated 
to be an odds ratio of 1.763 (from random-effects across all 11 cohorts, beta = 0.567, SE = 
0.035 and P = 2.98E-60). When comparing the lowest versus highest quartile of PRS estimated 
risk, membership in the highest risk quartile was associated with an odds ratio of 3.51 (95% CI = 
3.26 - 3.79) as displayed in Figure 2a. There was some heterogeneity in effect estimates across 
studies relating to genotyping platforms with I2 estimates of heterogeneity for all arrays, 
targeted arrays (NeuroX) and GWAS genotyping are respectively 70.06%, 0% and 75.65% 
(Supplementary Appendix 2). Additionally we carried out a joint analysis of odds ratios across 
each decile of PRS per study compared to the remainder of samples. We show an OR of 2.86 in 
the 10th risk decile (95% CI 2.60 - 3.16), non-significant ORs around 1 at the 5th and 6th 
deciles, and a significant protective OR at the 1st decile of PRS estimated risk, with an OR of 
0.41 (95% CI 0.37 - 0.45). When comparing the top 10% and bottom 10% of PRS across all 
samples, we see membership in the top 10% being associated with an OR of 5.83 (95% CI 5.14 
- 6.62). We also acknowledge that there might be some effects of selection bias by evaluating P 
thresholds per study and then meta-analyzing, although effect estimates all show at least similar 
trends and remain significant in random-effects meta-analyses. 
 
Genetic correlations across phenotypes 
 
We analyzed cross-trait genetic correlations between PD and 757 other GWAS datasets of 
interest curated by LDhub ​27​. After adjusting for multiple testing via false discovery rate, 4 
genetic correlations remained significant (Supplementary Table S6). These include positive 
correlations with intracranial volume and mean putamen volume from Hribar et al. 2015 (for the 
former RG = 0.351, SE = 0.077, P = 4.64E-06 and for the latter RG = 0.248, SE = 0.064, P = 
9.55E-05 respectively) ​28​. We also note significant negative correlations between current 
tobacco use and PD as well as “academic qualifications: NVQ or HND or HNC or equivalent” 
and PD in the UKBB dataset, suggesting that there is some mitigating effect for smoking status 
and educational attainment as they relate to PD risk (for the former RG = -0.134, SE = 0.034, P 
= 7.92E-05 and for the latter RG = -0.169, SE 0.045, P = 2.00E-04 respectively) ​29​. 
 
After noting these significant genetic correlations, we utilized MR methods to infer causality, 
using these phenotypes as exposures. The inverse variance weighted method was used to 
combine Wald ratios (or in the case of educational attainment by “Qualifications: NVQ or HND or 
HNC or equivalent”, a single Wald ratio was used since only 1 variant passed our pre-analysis 
clumping threshold of r​2 ​= 0.001, 10,000 kb) to ascertain significance of putative causal 
associations. Intracranial volume could not be tested due to the stringent nature of our 
pre-analysis filtering for this phase of MR. When these thresholds were relaxed to less stringent 
P thresholds for inclusion of SNPs from the intracranial volume GWAS, no significant 
associations were detected. In an analysis incorporating 16 variants of interest, current tobacco 
smoking status was not causally associated with PD risk (P > 0.05), suggesting shared genetic 
factors but no likely causative mechanism in a reduced SNP set from MR base. Educational 
attainment, quantified by attaining qualifications of NVQ or HND or HNC was associated with a 
decreased risk of PD (beta = -5.971, SE = 1.847, P = 0.001), although this should be viewed 
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with some guarded optimism as this analysis only includes a single variant (rs968050) and 
therefore sensitivity analyses such as MR Egger and radial analyses to further dissect the 
association are not possible. To note, the variant of interest in this case, rs968050, is implicated 
as a proxy for a genome-wide significant locus associated with bipolar disorder further 
complicating any possible association ​30​. Putamen volume exhibited a small but significant risk 
association in inverse variance weighted MR analysis (beta = 7.81E-04, SE = 3.07E-04, P = 
0.011). In addition, radial analyses using both inverse variance weighted and MR Egger models 
suggest significant heterogeneity in the risk estimates (Cochran’s test for heterogeneity, P < 
0.001 for tests of heterogeneity across variants), decreasing the likelihood of a truly causative 
association between putamen volume and PD, with likely violations of the assumptions of the 
MR paradigm. In radial analyses, one outlier variant in the putamen volume data was identified, 
rs62097986 (see Supplementary Figure S4). After excluding this variant, we saw a persistent 
association via inverse variance weighting (beta = 0.001, SE = 1.28E-04, P = 8.35E-16) 
although the MR Egger estimate was not significant (P > 0.05). This evidence suggests that 
putamen volume may have a causal relationship with PD, although more detailed future 
research is needed for a definitive answer. We also evaluated the possibility of reverse causality 
for these four GWAS, using our own PD derived summary statistics as an exposure. In this 
reverse causality analysis, no iterations of the inverse variance weighted or MR Egger analyses 
showed any significant associations (all P > 0.05). 
 
Additional smoking analyses using bi-directional GSMR and expanded exposure GWAS data 
provided interesting results. These include no significant association signal in either direction for 
current smoking (beta = -0.032, SE = 0.031, P = 0.302 at 72 SNPs for current smoking status as 
an exposure for PD and beta = 0.016, SE = 0.010, P = 0.113 at 136 SNPs for the reverse). For 
smoking initiation (status as ever regularly smoked), we see a protective association when using 
smoking as an exposure for PD (beta = -0.081, SE = 0.034, P = 0.016 at 180 SNPs) although 
this does not pass multiple test correction after other Mendelian randomization analyses 
described earlier. When looking in the reverse direction, the association for PD as an exposure 
for smoking initiation is significant and is contrary to what is commonly expected based on the 
results described above. We see that PD is a risk factor with a very small but significant effect 
estimate associated with smoking initiation (beta = 0.027, SE = 0.006, P = 5.03E-06 at 136 
SNPs), at roughly one third of the estimated effect size of its paired association in the opposite 
direction. 
 
In our expanded Mendelian randomization analysis of recently published GWAS focusing on 
educational attainment and cognitive performance, we note interesting associations related to 
putative causal relationships between traits. Educational attainment is associated with risk of PD 
(beta = 0.125, SE = 0.038, P = 1.16E-03 at 549 SNPs) while a much smaller effect size but 
more significant result exists in the reverse direction (beta = 0.010, SE = 0.002, P = 2.38E-05 at 
125 SNPs). Cognitive performance is a relatively large effect and significant risk factor for PD 
(beta = 0.242, SE = 0.042, P = 5.88E-09 at 197 SNPs) in our analyses, and the association in 
the reverse direction is not significant (P = 0.287 at 129 SNPs). The additional MR analyses of 
smoking and education exposures are summarized in Supplementary Figure S5. 
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DISCUSSION 
 
Risk genes highlight new biology and candidate therapeutic targets 
 
A key yield of GWAS is widening the scope of our biological knowledge base for diseases of 
interest, as well as making connections across diseases and other biological processes. We 
have identified 92 independent common genetic risk factors for a disease that was previously 
thought to be almost entirely environmental in its etiology a few decades ago. Through 
two-sample MR and network analysis of genes in linkage disequilibrium under association 
peaks, we have also nominated most likely regional targets for follow-up functional screening 
studies.  
 
Bcl2-associated athanogene 3 (​BAG3​) is a candidate gene containing two risk signals on 
chromosome 10. BAG3 is a component of the proteolytic stress response and protein stability 
networks identified. It is also a consistently significant QTL across multiple datasets including 
increased risk of PD associated with elevated expression of ​BAG3​ in blood as well as increased 
risk associated with decreased expression in muscle and elevated methylation in blood. 
 
GCH1,​ ​HLA-DRB5​ and ​SNCA​ have been implicated in a network that may have some utility in 
drug development and neuroinflammatory studies, relating to response to interferon gamma. 
These three well-studied genes also comprise networks associated to stress responses and 
responses to organic substances (​i.e.​ chemical stimuli and likely cytokines as per 
Supplementary Figure S1). ​GCH1​ expression in the caudate basal ganglia and tibial nerve 
tissues exhibits a strong inverse association with PD risk, while increased expression in blood 
and the cerebellum are associated with increased risk of PD. ​GCH1​ is GTP cyclohydrolase, a 
rate limiting enzyme co-factor for dopamine synthesis and it is biologically plausible that lower 
GCH1​ could increase risk PD. Coding mutations in GCH1 cause dopa-responsive dystonia, and 
have also been implicated as PD risk variants​12​.  Increased methylation at two probes at 
HLA-DRB5​ are associated with increased PD risk. Decreased activity in terms of both 
methylation and expression at ​SNCA​ are associated with PD risk in blood as well as expression 
in the basal caudate ganglia. 
 
PAM​ and ​BRIP1​ are novel loci identified in this report and both involved in networks related to 
stress and stimuli response on a cellular level. Peptidylgycine α-amidating monooxygenase 
(PAM) functions in neuropeptide secretion and interacts with copper deficiencies causing 
temperature dysregulation, seizures and anxiety in mouse models​31​. ​BRIP1,​ also known as 
BACH1​, is associated with autosomal dominant breast cancers, ovarian cancers and Fanconi 
anemia​32–34​. This gene is a potential target for research into neuroprotective compounds as it is 
associated with oxidative stress and activation of nuclear factor erythroid 2-related factor 2 
(Nrf2)​35​. Decreased expression of ​PAM​ is associated with PD risk across all cerebellar brain 
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regions and in all blood expression datasets. Increased expression of ​BRIP1​ in the GTEx basal 
ganglia tissues is associated with increased risk of PD. 
 
FYN​ is a novel risk locus; ​CTSB​, ​DDRGK1​ and ​MAP3K14​ are previously described risk loci, all 
are involved in response pathways described above. The ​FYN​ region identified as a novel PD 
risk locus in this report has been implicated in microglial inflammatory response ​36​. Additionally, 
FYN​ in an activated state is known to phosphorylate α-synuclein and play a key role in 
dopamine trafficking ​37–39​. ​FYN​ has also been implicated as a ​MAPT​ kinase involved in 
Alzheimer's disease ​40​. ​FYN​, ​CTSB​ and ​MAP3K14​ all share immune network connections. 
MAP3K14​ is also involved in interferon gamma response and appears in multiple overlapping 
enriched networks along with ​DDRGK1​ and ​FYN​. Methylation levels at ​FYN​ are inversely 
associated with PD risk while ​MAP3K14​ shows the opposite directionality. ​CTSB​ and ​DDRGK1 
show increased risk of PD associated with blood expression levels, while ​CTSB​ also shows the 
inverse of that association in brain, nerve and stomach, and a subset of basal ganglia tissues ​41​. 
 
Of additional interest is ​GAK​ and ​TMEM175​ both exhibiting significant associations with gene 
expression in the tibial nerve, and in opposite directions. This region has been of high interest in 
drug development but is complicated due to the independence of risk loci and the two genes 
sharing a promoter (Jinn et al. 2018, under review). Although, the effect size for the association 
at ​TMEM175​ (𝛃 = -0.3707, SE = 0.0582) has an absolute magnitude of effect almost twice that 
of ​GAK​ (𝛃 = 0.1465, SE = 0.0637). Also, between the two genes, ​TMEM175​ is the only one that 
is also associated with causal changes to expression in the cortical regions of the brain. 
 
In its current state, the data presented in Tables 2 and 3 plus Supplementary Tables S3-S5 are 
suggestive or confirmatory of both known and novel biological pathways within PD etiology. It is 
of particular interest that this method can shed light on two nearby, but independent loci, such 
as ​GAK​/​TMEM175​. While both variants remained significant and independent across analyses 
in this and in previous work, the MR analysis suggested more widespread impact in disease 
etiology associated with functional consequences related to the risk signals at ​TMEM175​ coding 
variation in tissues of interest as opposed to intronic variation in ​GAK ​. Additionally, this type of 
integrative data analysis has supported multiple novel loci that might have future therapeutic 
potential such as ​BRIP1, PAM and FYN​. Significant functional insights described above are also 
graphically summarized with regard to significance (FDR adjusted P) and directionality across 
different tissues in Supplementary Figure S6. 
 
Using LD score regression for cross trait analyses, we have highlighted new possible pathways 
of interest and confirmed previous hypotheses. The use of putamen and intracranial volumes as 
biomarkers may prove efficacious in future multi-modal modeling efforts. We also suggest at 
least some degree of possible functional connectivity in a causal pathway relating educational 
attainment and/or putamen volume to PD risk. The bi-directional GSMR results suggest a 
complex etiological connection between smoking initiation and PD as well as a strong 
association between cognitive performance and PD, each possibly relevant to multiple different 
mechanisms during disease manifestation.  
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Increased prediction strength and future prospects in GWAS 
 
From a genetic perspective, we have succeeded in improving our predictive efforts by simply 
moving P thresholds and increasing sample sizes as has been shown previously for other 
complex traits and common diseases with a polygenic architecture. Current AUC estimates from 
our PRS suggest we have explained between 11-15% of Parkinson’s genetic liability at an AUC 
approaching 64% from only common SNP variation. This is accomplished through current 
GWAS applications by including potential risk factors at up to P < 1E-03 in some datasets and 
using over 4,000 semi-independent risk variants. The same calculations provide a ceiling for 
predictions derived from heritable risk in PD at a maximum possible AUC of roughly 85%. These 
calculations coupled with the biological insights provided above suggest that GWAS and related 
methods have a great deal more insight to provide and should further help move us down a path 
towards quality etiologic-based interventions and diagnostics. Put simply, more samples, more 
data, more understanding, and more potential. 
 
Current PRS derived predictive models, while explaining a respectable amount of disease 
liability, do not have positive predictive values that would be feasible to screen large 
populations. At current levels, on a population scale there would be roughly 14 false positives 
per real case using genetic data alone at an estimated prevalence of 0.5%. To improve on this, 
adding multimodal data such as smell tests, family history and similar low cost / non-invasive 
factors could be useful and one day provide a strong tool for prospective study and trial 
recruitment ​42​. As an additional note, current collaborative efforts underway to utilize large-scale 
genome sequencing and nonlinear machine learning methods to build genetic classifiers may 
be able to push beyond the predictive boundaries detailed in this manuscript through the 
incorporation of rare genetic variation. 
 
Limitations of the study  
 
While we have made progress in assessing genetic risk factors for PD in this study, there are a 
number of limitations to our study. 
 
One of the limitations of this study is the use of multiple imputation panels, due to logistic 
constraints. Adding datasets from non-European populations would be helpful to further improve 
our granularity in association testing and ability to fine-map loci through integration of more 
variable LD signatures. Additionally, ancestry specific PD linkage disequilibrium reference 
panels of substantial size such as those for Ashkenazi Jewish participants at 23andMe will help 
us unravel further levels of detail in interesting loci such as ​GBA​ and ​LRRK2​. This may be 
particularly evident at strongly associated loci such as ​LRRK2​ and ​GBA​ whose LD patterns may 
be quite variable within European populations, accentuating the possible influence of LD 
reference series on conditional analyses in some cases​43​. Moreover, larger QTL studies and 
PD-specific network data from large scale cellular screenings would allow us to build more 
robust functional inference particularly when many of our QTL associations are hampered by 
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both sample size and ​cis​-SNP density. One major limitation in particular is the implementation of 
QTL analyses that only include one variant per cis-QTL tested. This can affect MR results by not 
only decreasing power due to lower variance explained, but also by preventing the use of tests 
such as MR egger or weighted median, which can be used to ascertain the likelihood of 
violating the inherent assumptions of MR. 
 
To overcome these weaknesses and push the field forward, there are a few solutions that we 
should work toward. First of all, data transparency and openness, allowing all researchers to 
share participant-level data in a secure environment as this would facilitate inclusiveness and 
uniformity in analyses while maintaining the confidentiality of study participants. Also, the use of 
genome sequencing technologies could improve this effort with greater accuracy for rarer 
variants that are more difficult to impute, and better capture structural variations, although due 
to the need for very large sample sizes for analysis of rarer variants, well-powered analyses are 
likely quite far in the future.  Outreach to underrepresented and diverse ancestry populations to 
build additional collaborations and include samples from non-European backgrounds could 
prove extremely valuable. Finally, current solutions such as federated (collaborative) learning 
methods could be applied to genomics to make strides for both the GWAS and machine 
learning approaches on a global scale while still maintaining privacy of individual sites when 
needed​44,45​. Tools like federated learning approaches could be key in building global analytics 
communities and more productive collaborations in genomics despite growing privacy 
restrictions. It is our goal that the next global scale efforts in PD genetics will be even larger, 
more open, better harmonized, and much more inclusive. 
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TABLES 
 
Table 1: ​Novel loci associated with Parkinson's disease. 

 
  



Table 2: ​Summary of significant functional inferences from QTL associations via Mendelian 
randomization for nominated genes of interest. 

 
  



Table 3: ​Protein network analysis for linked genes under association peaks. 

 
  



Table 4: ​Summary of genetic predictive model performance. 

 
  



Table 5:​ Significant genetic correlations across traits. 

 
  



FIGURES 
 
Figure 1:​ Iris plots of the current meta-GWAS data.  Radius position denotes -log10 converted 
p-values (truncated for display) with the outer ring denoting chromosomal positions.  Red points 
indicate SNPs reaching genome-wide significance (P < 5E-08.) 

 



Figure 2:​ Predictive model details.  
 
A. Odds ratios by quartile of PRS.  

 
  



B. Odds ratios by decile of PRS, comparing each decle to all others.  

 
  



C. PRS derived area under the curve estimates for the predictive models from receiver operator 
curve analyses.  

 
  



 
AUTHOR CONTRIBUTIONS 
 
Study level analysis 
MAN, CB, CLV, KH, SB-C, DC, MT, DK, LR, JS-S, LK, LP, ABS 
 
Additional analysis and data management 
MAN, CB,  SB-C, AJN, AX, JY, JG, PMV, ABS 
 
Design and funding 
MAN, CB, CLV, KH, SB-C, LP, MS, KM, MT, AB, JY, ZG-O, TG, PH, JMS, NW, DAH, JH, HRM, 
JG, PMV, RRG, ABS 
 
Critical review and writing the manuscript 
MAN, CB, CLV, KH, SB-C, DC, MT, DAK, AJN, AX, JB, EY, RvC, JS-S, CS, MS, LK, LP, AS, 
HI, HL, FF, JRG, DGH, SWS, JAB, MM, J-CC, SL, JJ, LMS, MS, PT, KM, MT, AB, JY, ZG-O, 
TG, PH, JMS, NW, DAH, JH, HRM, JG, PMV, RRG, ABS 
 
  



DATA ACCESS (POST PEER REVIEW) 
 
GWAS summary statistics for 23andMe datasets (post-Chang and data included in Chang et al. 
2017 and Nalls et al. 2014) will be made available through 23andMe to qualified researchers 
under an agreement with 23andMe that protects the privacy of the 23andMe participants. 
Please visit ​research.23andme.com/collaborate/#publication​ for more information and to apply 
to access the data. 
 
Summary statistics excluding Nalls et al. 2014, 23andMe post-Chang et al. 2017 and PDWBS 
are available from ​https://github.com/neurogenetics/meta5​. 
 

http://research.23andme.com/collaborate/#publication
https://github.com/neurogenetics/meta5

