162 research outputs found

    Germline Genetic Variants Disturbing the Let-7/LIN28 Double-Negative Feedback Loop Alter Breast Cancer Susceptibility

    Get PDF
    Previous studies have shown that let-7 can repress the post-transcriptional translation of LIN28, and LIN28 in turn could block the maturation of let-7, forming a double-negative feedback loop. In this study, we investigated the effect of germline genetic variants on regulation of the homeostasis of the let-7/LIN28 loop and breast cancer risk. We initially demonstrated that the T/C variants of rs3811463, a single nucleotide polymorphism (SNP) located near the let-7 binding site in LIN28, could lead to differential regulation of LIN28 by let-7. Specifically, the C allele of rs3811463 weakened let-7–induced repression of LIN28 mRNA, resulting in increased production of LIN28 protein, which could in turn down-regulate the level of mature let-7. This effect was then validated at the tissue level in that the normal breast tissue of individuals with the rs3811463-TC genotype expressed significantly lower levels of let-7 and higher levels of LIN28 protein than those individuals with the rs3811463-TT genotype. Because previous in vitro and ex vivo experiments have consistently suggested that LIN28 could promote cellular transformation, we then systematically evaluated the relationship between rs3811463 as well as other common LIN28 SNPs and the risk of breast cancer in a stepwise manner. The first hospital-based association study (n = 2,300) demonstrated that two SNPs were significantly associated with breast cancer risk, one of which was rs3811463, while the other was rs6697410. The C allele of the rs3811463 SNP corresponded to an increased risk of breast cancer with an odds ratio (OR) of 1.25 (P = 0.0091), which was successfully replicated in a second independent study (n = 1,156) with community-based controls. The combined P-value of the two studies was 8.0×10−5. Taken together, our study demonstrates that host genetic variants could disturb the regulation of the let-7/LIN28 double-negative feedback loop and alter breast cancer risk

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes

    Application of a stochastic modeling to evaluate tuberculosis onset in patients treated with tumor necrosis factor inhibitors

    Get PDF
    In this manuscript we apply stochastic modeling to investigate the risk of reactivation of latent mycobacterial infections in patients undergoing treatment with tumor necrosis factor inhibitors. First, we review the perspective proposed by one of the authors in a previous work and which consists in predicting the occurrence of reactivation of latent tuberculosis infection or newly acquired tuberculosis during treatment; this is based on variational procedures on a simple set of parameters (e.g. rate of reactivation of a latent infection). Then, we develop a full analytical study of this approach through a Markov chain analysis and we find an exact solution for the temporal evolution of the number of cases of tuberculosis infection (re)activation. The analytical solution is compared with Monte Carlo simulations and with experimental data, showing overall excellent agreement. The generality of this theoretical framework allows to investigate also the case of non-tuberculous mycobacteria infections; in particular, we show that reactivation in that context plays a minor role. This may suggest that, while the screening for tuberculous is necessary prior to initiating biologics, when considering non-tuberculous mycobacteria only a watchful monitoring during the treatment is recommended. The framework outlined in this paper is quite general and could be extremely promising in further researches on drug-related adverse events.Comment: 26 pages, 7 figure

    MicroRNAs Up-Regulated by CagA of Helicobacter pylori Induce Intestinal Metaplasia of Gastric Epithelial Cells

    Get PDF
    CagA of Helicobacter pylori is a bacterium-derived oncogenic protein closely associated with the development of gastric cancers. MicroRNAs (miRNAs) are a class of widespread non-coding RNAs, many of which are involved in cell growth, cell differentiation and tumorigenesis. The relationship between CagA protein and miRNAs is unclear. Using mammalian miRNA profile microarrays, we found that miRNA-584 and miRNA-1290 expression was up-regulated in CagA-transformed cells, miRNA-1290 was up-regulated in an Erk1/2-dependent manner, and miRNA-584 was activated by NF-κB. miRNA-584 sustained Erk1/2 activities through inhibition of PPP2a activities, and miRNA-1290 activated NF-κB by knockdown of NKRF. Foxa1 was revealed to be an important target of miRNA-584 and miRNA-1290. Knockdown of Foxa1 promoted the epithelial-mesenchymal transition significantly. Overexpression of miRNA-584 and miRNA-1290 induced intestinal metaplasia of gastric epithelial cells in knock-in mice. These results indicate that miRNA-584 and miRNA-1290 interfere with cell differentiation and remodel the tissues. Thus, the miRNA pathway is a new pathogenic mechanism of CagA

    Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MMP-13 and IGFBP-5 are important factors involved in osteoarthritis (OA). We investigated whether two highly predicted microRNAs (miRNAs), miR-140 and miR-27a, regulate these two genes in human OA chondrocytes.</p> <p>Methods</p> <p>Gene expression was determined by real-time PCR. The effect of each miRNA on IGFBP-5 and MMP-13 expression/production was evaluated by transiently transfecting their precursors (pre-miRNAs) and inhibitors (anti-miRNAs) into human OA chondrocytes. Modulation of IGFBP-5, miR-140 and miR-27a expression was determined upon treatment of OA chondrocytes with cytokines and growth factors.</p> <p>Results</p> <p>IGFBP-5 was expressed in human chondrocytes with its level significantly lower (p < 0.04) in OA. Five computational algorithms identified miR-140 and miR-27a as possible regulators of MMP-13 and IGFBP-5 expression. Data showed that both miRNAs were expressed in chondrocytes. There was a significant reduction (77%, p < 0.01) in miR-140 expression in OA compared to the normal chondrocytes, whereas miR-27a expression was only slightly decreased (23%). Transfection with pre-miR-140 significantly decreased (p = 0.0002) and with anti-miR-140 significantly increased (p = 0.05) IGFBP-5 expression at 24 hours, while pre-miR-27a did not affect either MMP-13 or IGFBP-5. Treatment with anti-miR-27a, but not with anti-miR-140, significantly increased the expression of both MMP-13 (p < 0.05) and IGFBP-5 (p < 0.01) after 72 hours of incubation. MMP-13 and IGFBP-5 protein production followed the same pattern as their expression profile. These data suggest that IGFBP-5 is a direct target of miR-140, whereas miR-27a down-regulates, likely indirectly, both MMP-13 and IGFBP-5.</p> <p>Conclusion</p> <p>This study is the first to show the regulation of these miRNAs in human OA chondrocytes. Their effect on two genes involved in OA pathophysiology adds another level of complexity to gene regulation, which could open up novel avenues in OA therapeutic strategies.</p

    Metformin Represses Self-Renewal of the Human Breast Carcinoma Stem Cells via Inhibition of Estrogen Receptor-Mediated OCT4 Expression

    Get PDF
    Metformin, a Type II diabetic treatment drug, which inhibits transcription of gluconeogenesis genes, has recently been shown to lower the risk of some diabetes-related tumors, including breast cancer. Recently, “cancer stem cells” have been demonstrated to sustain the growth of tumors and are resistant to therapy. To test the hypothesis that metformin might be reducing the risk to breast cancers, the human breast carcinoma cell line, MCF-7, grown in 3-dimensional mammospheres which represent human breast cancer stem cell population, were treated with various known and suspected breast cancer chemicals with and without non-cytotoxic concentrations of metformin. Using OCT4 expression as a marker for the cancer stem cells, the number and size were measured in these cells. Results demonstrated that TCDD (100 nM) and bisphenol A (10 µM) increased the number and size of the mammospheres, as did estrogen (10 nM E2). By monitoring a cancer stem cell marker, OCT4, the stimulation by these chemicals was correlated with the increased expression of OCT4. On the other hand, metformin at 1 and 10 mM concentration dramatically reduced the size and number of mammospheres. Results also demonstrated the metformin reduced the expression of OCT4 in E2 & TCDD mammospheres but not in the bisphenol A mammospheres, suggesting different mechanisms of action of the bisphenol A on human breast carcinoma cells. In addition, these results support the use of 3-dimensional human breast cancer stem cells as a means to screen for potential human breast tumor promoters and breast chemopreventive and chemotherapeutic agents

    Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity

    Get PDF
    The epithelial-to-mesenchymal transition (EMT) is a critical developmental process that has recently come to the forefront of cancer biology. In breast carcinomas, acquisition of a mesenchymal-like phenotype that is reminiscent of an EMT, termed oncogenic EMT, is associated with pro-metastatic properties, including increased motility, invasion, anoikis resistance, immunosuppression and cancer stem cell characteristics. This oncogenic EMT is a consequence of cellular plasticity, which allows for interconversion between epithelial and mesenchymal-like states, and is thought to enable tumor cells not only to escape from the primary tumor, but also to colonize a secondary site. Indeed, the plasticity of cancer cells may explain the range of pro-metastatic traits conferred by oncogenic EMT, such as the recently described link between EMT and cancer stem cells and/or therapeutic resistance. Continued research into this relationship will be critical in developing drugs that block mechanisms of breast cancer progression, ultimately improving patient outcomes

    A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese

    Get PDF
    To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (P = 8.54×10−10; odds ratio [OR] = 1.57; 95% confidence interval [CI] = 1.36–1.82), and serine racemase (SRR) (P = 3.06×10−9; OR = 1.28; 95% CI = 1.18–1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 (P = 9.65×10−10; OR = 1.29, 95% CI = 1.19–1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations

    An intron polymorphism of the fibronectin gene is associated with end-stage knee osteoarthritis in a Han Chinese population: two independent case-control studies

    Get PDF
    BACKGROUND: Knee osteoarthritis (OA) is a complex disease involving both biomechanical and metabolic factors that alter the tissue homeostasis of articular cartilage and subchondral bone. The catabolic activities of extracellular matrix degradation products, especially fibronectin (FN), have been implicated in mediating cartilage degradation. Chondrocytes express several members of the integrin family which can serve as receptors for FN including integrins α5β1, αvβ3, and αvβ5. The purpose of this study was to determine whether polymorphisms in the FN (FN-1) and integrin genes are markers of susceptibility to, or severity of, knee OA in a Han Chinese population. METHODS: Two independent case–control studies were conducted on 928 patients with knee OA and 693 healthy controls. Ten single nucleotide polymorphisms (SNPs) of FN-1 and the integrin αV gene (ITGAV) were detected using the ABI 7500 real-time PCR system. RESULTS: The AT heterozygote in FN-1 (rs940739A/T) was found to be significantly associated with knee OA (adjusted OR = 1.44; 95% CI = 1.16–1.80) in both stages of the study. FN-1 rs6725958C/A and ITGAV rs10174098A/G SNPs were only associated with knee OA when both study groups were combined. Stratifying the participants by Kellgren-Lawrence (KL) score identified significant differences in the FN-1 rs6725958C/A and rs940739 A/T genotypes between patients with grade 4 OA and controls. Haplotype analyses revealed that TGA and TAA were associated with a higher risk of OA, and that TAG conferred a lower risk of knee OA in the combined population. CONCLUSIONS: Our study suggests that the FN-1 rs940739A/T polymorphism may be an important risk factor of genetic susceptibility to knee OA in the Han Chinese population
    corecore