138 research outputs found

    Dynamic convergent shock compression initiated by return current in high-intensity laser solid interactions

    Full text link
    We investigate the dynamics of convergent shock compression in the solid wire targets irradiated by an ultra-fast relativistic laser pulse. Our Particle-in-Cell (PIC) simulations and coupled hydrodynamic simulations reveal that the compression process is initiated by both magnetic pressure and surface ablation associated with a strong transient surface return current with the density in the order of 1e17 A/m^2 and a lifetime of 100 fs. The results show that the dominant compression mechanism is governed by the plasma β\beta, i.e., the ratio of the thermal pressure to magnetic pressure. For small radii and low atomic number Z wire targets, the magnetic pressure is the dominant shock compression mechanism. As the target radius and atomic number Z increase, the surface ablation pressure is the main mechanism to generate convergent shocks based on the scaling law. Furthermore, the indirect experimental indication of the shocked hydrogen compression is provided by measuring the evolution of plasma expansion diameter via optical shadowgraphy. This work could offer a novel platform to generate extremely high pressures exceeding Gbar to study high-pressure physics using femtosecond J-level laser pulses, offering an alternative to the nanosecond kJ laser pulse-initiated and pulse power Z-pinch compression methods

    Time-resolved optical shadowgraphy of solid hydrogen jets as a testbed to benchmark particle-in-cell simulations

    Full text link
    Particle-in-cell (PIC) simulations are a superior tool to model kinetics-dominated plasmas in relativistic and ultrarelativistic laser-solid interactions (dimensionless vectorpotential a0>1a_0 > 1). The transition from relativistic to subrelativistic laser intensities (a0≲1a_0 \lesssim 1), where correlated and collisional plasma physics become relevant, is reaching the limits of available modeling capabilities. This calls for theoretical and experimental benchmarks and the establishment of standardized testbeds. In this work, we develop such a suitable testbed to experimentally benchmark PIC simulations using a laser-irradiated micron-sized cryogenic hydrogen-jet target. Time-resolved optical shadowgraphy of the expanding plasma density, complemented by hydrodynamics and ray-tracing simulations, is used to determine the bulk-electron temperature evolution after laser irradiation. As a showcase, a study of isochoric heating of solid hydrogen induced by laser pulses with a dimensionless vectorpotential of a0≈1a_0 \approx 1 is presented. The comparison of the bulk-electron temperature of the experiment with systematic scans of PIC simulations demostrates that, due to an interplay of vacuum heating and resonance heating of electrons, the initial surface-density gradient of the target is decisive to reach quantitative agreement at \SI{1}{\ps} after the interaction. The showcase demostrates the readiness of the testbed for controlled parameter scans at all laser intensities of a0≲1a_0 \lesssim 1

    Overview of China’s Antarctic research progress 1984–2016

    Get PDF
    It is more than 30 years since the first Chinese National Antarctic Research Expedition (CHINARE) landed in Antarctica in 1984, representing China’s initiation in polar research. This review briefly summarizes the Chinese Antarctic scientific research and output accomplished over the past 30 years. The developments and progress in Antarctic research and the enhancement of international scientific cooperation achieved through the implementation of the CHINARE program have been remarkable. Since the 1980s, four permanent Chinese Antarctic research stations have been established successively and 33 CHINAREs have been completed. The research results have been derived from a series of spatiotemporal observations in association with various projects and multidisciplinary studies in the fields of oceanography, glaciology, geology, geophysics, geochemistry, atmospheric science, upper atmospheric physics, Antarctic astronomy, biology and ecology, human medicine, polar environment observation, and polar engineering

    Visualizing Ultrafast Kinetic Instabilities in Laser-Driven Solids using X-ray Scattering

    Full text link
    Ultra-intense lasers that ionize and accelerate electrons in solids to near the speed of light can lead to kinetic instabilities that alter the laser absorption and subsequent electron transport, isochoric heating, and ion acceleration. These instabilities can be difficult to characterize, but a novel approach using X-ray scattering at keV energies allows for their visualization with femtosecond temporal resolution on the few nanometer mesoscale. Our experiments on laser-driven flat silicon membranes show the development of structure with a dominant scale of ~60\unit{nm} in the plane of the laser axis and laser polarization, and ~95\unit{nm} in the vertical direction with a growth rate faster than 0.1/fs0.1/\mathrm{fs}. Combining the XFEL experiments with simulations provides a complete picture of the structural evolution of ultra-fast laser-induced instability development, indicating the excitation of surface plasmons and the growth of a new type of filamentation instability. These findings provide new insight into the ultra-fast instability processes in solids under extreme conditions at the nanometer level with important implications for inertial confinement fusion and laboratory astrophysics

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes

    Chromosomal microarray testing in adults with intellectual disability presenting with comorbid psychiatric disorders.

    Get PDF
    Chromosomal copy-number variations (CNVs) are a class of genetic variants highly implicated in the aetiology of neurodevelopmental disorders, including intellectual disabilities (ID), schizophrenia and autism spectrum disorders (ASD). Yet the majority of adults with idiopathic ID presenting to psychiatric services have not been tested for CNVs. We undertook genome-wide chromosomal microarray analysis (CMA) of 202 adults with idiopathic ID recruited from community and in-patient ID psychiatry services across England. CNV pathogenicity was assessed using standard clinical diagnostic methods and participants underwent comprehensive medical and psychiatric phenotyping. We found an 11% yield of likely pathogenic CNVs (22/202). CNVs at recurrent loci, including the 15q11-q13 and 16p11.2-p13.11 regions were most frequently observed. We observed an increased frequency of 16p11.2 duplications compared with those reported in single-disorder cohorts. CNVs were also identified in genes known to effect neurodevelopment, namely NRXN1 and GRIN2B. Furthermore deletions at 2q13, 12q21.2-21.31 and 19q13.32, and duplications at 4p16.3, 13q32.3-33.3 and Xq24-25 were observed. Routine CMA in ID psychiatry could uncover ~11% new genetic diagnoses with potential implications for patient management. We advocate greater consideration of CMA in the assessment of adults with idiopathic ID presenting to psychiatry services
    • …
    corecore