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Abstract

Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative
low accuracy of such predictions which are conducted independently of biological context by design, systematic
experimental identification and validation of every functional microRNA target is currently challenging. Consequently,
biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA
functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of
inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize
deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor
microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression
dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in
biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We
further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets.
Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to
the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly,
our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-
associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may
serve as a tumor suppressor gene at the 9q21.1–22.3 CAGR locus, a well established risk factor locus in head and neck
cancers for which tumor suppressor genes have not been identified. This new strategy that integrates expression profiling,
genetics and novel computational biology approaches provides for improved efficiency in characterization and modeling of
microRNA functions in cancer as compared to the state of art and is applicable to the investigation of microRNA functions in
other biological processes and diseases.

Citation: Lee Y, Yang X, Huang Y, Fan H, Zhang Q, et al. (2010) Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck
Tumor Metastasis. PLoS Comput Biol 6(4): e1000730. doi:10.1371/journal.pcbi.1000730

Editor: Weixiong Zhang, Washington University in Saint Louis, United States of America

Received December 3, 2009; Accepted March 2, 2010; Published April 1, 2010

Copyright: � 2010 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partially supported in part by NIH grants 1U54CA121852 and UL1 RR024999, and the Cancer Research Foundation. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hxing@bsd.uchicago.edu (HRX); yLussier@medicine.bsd.uchicago.edu (YAL)

. These authors contributed equally to this work.

" These authors are joint senior authors on this work.

Introduction

Since the discovery of microRNAs as important regulators of

broad biological processes [1–5], characterization of their

functions in cancer has been hindered by lack of microRNA

profiling information in tumors such as squamous cell

carcinoma of the head and neck (HNSCC). Previous reports

show that only one or a few gene targets, identified among

predicted or differentially expressed genes, were directly

targeted by the microRNA under investigation [6–8]. While

sequence-based computational algorithms have been applied

for predicting all potential microRNA gene targets; false

positive rates remains relatively high [9,10]. Further, se-

quence-based predictions are unable, by design, to account

for biological contexts (e.g. cell and tissue types, normal or

disease conditions) and thus are not optimized for predicting the

biological function of genes targeted by cancer microRNAs.

Moreover, genome-scale and biological studies have yet to

identify key regulatory networks perturbed by altered micro-

RNA functions in cancer.
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To investigate microRNA function in HNSCC, we sought to

develop an effective computational approach that is complemen-

tary to microRNA profiling and, in addition, is capable of

simultaneously predicting tumor suppressor microRNAs as well as

their functional targets from gene expression. In this report we

illustrate how phenotypic knowledge of genetic disorders (OMIM

database) can be utilized jointly with gene expression analyses to

achieve this goal. Using this approach, we selected miR-204

among ten prioritized microRNAs for biological characterization,

as miR-204 is located at the cancer-associated genomic region

(CAGR) 9q21.1–q22.3 locus exhibiting high frequency of Loss of

heterozygosity (LOH) in human HNSCC [11–15], and a CAGR

for which candidate tumor suppressor gene targets have not been

identified. Additionally, we report the first computationally

predicted and biologically validated microRNA-regulated network

that is dependent on the epidermal growth factor receptor (EGFR)

whose overexpression occurs in over 80% of head and neck

cancer. We further demonstrate that gene targets of miR-204

exhibit enriched bottleneck and hub network topology properties

in a predicted protein-protein interaction network (PPIN).

Moreover, we confirm the validity of our computational

predictions of a microRNA function, as well as its gene targets

and system’s properties through conducting extensive and

thorough biological characterization using a clinically relevant in

vivo metastatic model of head and neck cancer.

In summary, we show how such a high throughput system’s

strategy can accelerate the investigation of microRNA function in

cancer by illustrating altered complex biological processes and

regulatory pathways associated with microRNA dysfunction in

cancer, by identifying among all putative microRNA gene targets

only those that are dysregulated, and by elucidating molecular

interactions underpinning microRNA regulation of malignant

transformation and progression. The ability to characterize tumor

suppressor microRNAs through a network analysis of mRNA

expression datasets would be a major advance with potentially

wide application. Further, we provide experimental evidence

linking microRNA function to the genetic risk of HNSCC. We

show at the LOH 9q21.1–22.3 locus, miR-204 could serve as a

tumor suppressor of HNSCC oncogenesis and progression.

Results

A figure summarizing the main results and experimental

approaches of this paper is included as Supporting Figure 1 in

Text S1.

Combining genome-scale predictive strategies to
prioritize candidate microRNAs for biological
characterization in HNSCC

At the time of initiating this study, comprehensive analysis of

microRNA expression profile in head and neck cancer (HNSCC)

was not available and would have required time-consuming

accruement of tumor tissues for conducting such analysis, a

situation that is not limited to HNSCC research. We hypothesized

that the development of a computational capability to simulta-

neously predict tumor suppressor microRNAs as well as their

functional targets from more widely available genome-wide gene

expression datasets could be an efficient reverse engineering

approach for identifying deregulated microRNAs and their

functional gene targets.

We first developed IMRE, a statistical method to predict altered

expression of microRNAs from genome-wide mRNA expression

and putative microRNA targets databases (Supporting Figure 2 in

Text S1, Materials and Methods). This strategy is based, in part,

on the observations that at genome scale the expression of

microRNAs and their direct mRNA targets are, in general,

inversely correlated [16,17]. To conduct this analysis, we

integrated five complementary microRNA target databases to

generate ‘‘miRNOME’’ that contains 534 human microRNAs and

17,343 microRNA gene targets (Materials and Methods, and

Table 1 in Text S2). We validated this method using two

independent cancer expression profiling experiments in GEO

comprised of paired mRNA and microRNA expressions for

tumors and normal tissue (GSE2564 [18]: multiple epithelial

cancer; GSE8126 [19]: prostate cancer). IMRE-predicted down-

regulated microRNAs that are exclusively inferred from mRNA

expression and microRNA targets datasets (Materials and

Methods) were enriched in the expression analysis of the

corresponding microRNA array dataset (GSE2564: P = 0.014;

GSE8126: P = 0.0002 respectively, cumulative hypergeometric

test, data not shown). A recent study also demonstrated the

increased prediction specificity of microRNA and its gene target

relationship via intersecting the results of multiple prediction

algorithms [20].

Subsequently, we applied the IMRE method to analyze two

independent HNSCC mRNA microarray datasets for predicting

deregulated microRNAs from genome-wide mRNA expression

(Supporting Figure 2 in Text S1, Materials and Methods): first, the

GSE6631 set that provides differential mRNA gene expression

between 22 HNSCC non-microdissected patient tumor samples

and their paired normal squamous tissues [21], and second, the

GSE2379 [22] set that contains 34 micro-dissected node-positive

HNSCC tumors of the hypopharynx. We noted that vast majority

of the known microRNAs had at least one putative target in the

top 500 deregulated genes of the HNSCC expression arrays

(GSE6631), with a median of 19 targets. Therefore, it is unfeasible

to manually select microRNA candidates from their deregulated

targets for biological validation. Applying IMRE method to each

dataset, we predicted a set of down-regulated microRNAs in

HNSCC (113 and 43, respectively; FDR #0.05, Materials and

Methods), of which 34 were consistently found in both prediction

Author Summary

MicroRNAs regulate the expression of genes in cells and
are important in cancer development and progression.
Designing new microRNA-based treatments requires the
understanding of their mechanisms of action. Previous
biological studies lack in depth since only a few genes are
confirmed as microRNA targets. Additionally, key biological
systems perturbed by altered microRNA functions in the
context of cancer remain to be identified. Here, we
demonstrate for the first time how genetic knowledge
about the inheritance of cancer can be utilized jointly with
data about the expression of genes in cancer samples to
model deregulated microRNAs and their functions at
multiple scales of biology. Our approach further uncovers
previously unknown connections between microRNAs,
their regulated genes, and their dynamics. Using head
and neck cancer as a model, we predict the presence,
functions, and gene targets of a new tumor suppressor
microRNA in a cancer-associated chromosomal region
where a candidate gene has not been identified. We then
confirm their validity with extensive and thorough
biological characterization and show attenuation of lung
metastasis in mice. The discovery of molecular networks
regulated by microRNAs could be exploited for the design
of new treatments as an alternative to the single-gene
target paradigm.

Network Modeling of microRNA Function in Cancer
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sets (P-value = 2.0610216, Fisher’s exact test, Figure 1A and Table

2 in Text S2, FDR ,0.05, Materials and Methods). Predictions of

up-regulated microRNAs did not reach reproducible statistical

significance (not shown).

To further reduce the number of microRNAs to the most

promising candidates for HNSCC, we conducted a statistical

enrichment analysis of putative microRNA targets among

inheritable cancer genes in the OMIM human disease gene

database [Online Mendelian Inheritance in Man, http://www.

ncbi.nlm.nih.gov/omim/ (downloaded Dec. 1, 2006)]. OMIM

contains 610 biologically validated cancer genes among which 586

(96%) are predicted targets of 527 microRNAs in miRNOME. We

observed that each of the 527 microRNAs could, on average,

target 30 OMIM cancer genes (not shown). Thus, it is also

unfeasible to manually select microRNA candidates from OMIM

cancer genes for biological validation. Our analyses identified 46

microRNAs significantly enriched in the inheritable cancer gene

subset of OMIM in the miRNOME (Figure 1A; Table 3 in Text

S2, Materials and Methods, Protocol S1/Section A, and Dataset

S1). Since microRNAs can be deregulated across cancers of

different tissue origin [23], we performed a review of literature and

confirmed the validity of these 46 predictions (OMIM; Supporting

Figure 3 in Text S1, P = 0.039; cumulative hypergeometric test,

Table 4 in Text S2, Materials and Methods).

Thereafter, we reduced the list of candidates in HNSCC to ten

microRNAs (Figure 1A) that were predicted in the HNSCC gene

expression (34 microRNAs; Table 2 in Text S2) as well as in

inheritable cancer genes (46 microRNAs; Table 3 in Text S2).

Among the ten prioritized microRNAs, four belong to the let-7

tumor suppressor microRNA family (Figure 1A).

miR-204 is located at the genomic imbalanced 9q21.1-
22.3 locus associated with genetic predisposition for
head and neck cancer

We chose miR-204 among the ten prioritized microRNAs for

thorough biological characterization based on the following

considerations. First, miR-204 is located within the sixth intron

of the host gene transient receptor potential melastatin 3 cation

channel (TRPM3, NM_020952) and is transcribed in the same

direction as TRPM3 [24]. TRPM3 is located on human

chromosome 9q21.11 that is within the 9q21.1–q22.3 locus

exhibiting high frequency of Loss of heterozygosity (LOH) in

human HNSCC [11–15]. LOH at 9q21.1–q22.3 occurs in 37% of

premalignant head and neck lesions, and increases to 67% in

HNSCC [14]. Second, in addition to the genomic imbalance at

9q21.1–q22.3 locus, chromosomal aberrations occur most fre-

quently at 3p, 5q, 9p, 11q and 17p in HNSCC [11,12,25]. With

the exception of let-7g that is located at the 3p21 locus (note that

let7g is also included in the class of microRNAs with related

mature sequence ‘‘Let7/98’’), the other 7 prioritized microRNAs

are not in the cancer associated genomic regions (CAGRs). Third,

while potential tumor suppressor gene candidates have been

identified for other CAGRs in HNSCC, gene candidates

possessing tumor suppressor activity associated with the 9q21

locus have not been identified. Thus the mechanisms by which

changes at this locus affecting HNSCC oncogenesis remain

uncharacterized. Fourth, the role of miR-204 in human cancer

has not been established.

We first examined miR-204 host gene TRPM3 expression by

quantitative PCR (qPCR) and observed near complete TRPM3

suppression in four micro-dissected HNSCC tumors (Figure 1B)

and in a panel of 10 low passage HNSCC cell lines generated from

tumors of diverse head and neck locations (Figure 1C and Table 5

in Text S2) [26]. We subsequently measured miR-204 expression

in HNSCC tumors and cell lines. Consistent with the observed

near complete loss of TRPM3 (Figures 1B–C), miR-204

expression was inhibited in all four tumors by 85% to 99%

(Figure 1D), and by more than 90% in all ten HNSCC cell lines

(Figure 1E) compared to samples of pooled normal buccal mucosa.

The frequent allelic loss at 9q21.1–q22.3 in HNSCC [11–14]

provides genetic evidence that loss of miR-204 microRNA

function may occur as a result of genomic imbalance at this site

and that miR-204 may be a potential candidate associated with

the tumor suppressor activity of 9q21.1–q22.3.

Since miR-204 was also predicted in the OMIM analysis to be

associated with lymphoma (Table 3 in Text S2), we quantified

miR-204 expression in immortalized ‘‘normal B cell 11365’’ and

three Burkitt B-cell lymphoma cell lines and found its expression

significantly reduced (Figure 1F). Further, paired comparison of

miR-204 expression between 6 types of adenocarcinomas and

their respective normal tissues was conducted using the microRNA

array dataset GSE2564 [18]. miR-204 was significantly down-

regulated in breast (P = 0.014), kidney (P = 0.004) and prostate

(P = 0.0001) tumors (Figure 1G). Additionally, significant miR-204

down-regulation was recently reported in a subtype of acute

myeloid leukemia bearing cytoplasmic mutated nucleophosmin

[27]. Here, we demonstrate for the first time, the accuracy and

efficiency of joint analyses of mRNA expression, inheritable

disease genes, and microRNA target databases to prioritize

deregulated microRNAs for biological characterization. Collec-

tively, these biological findings support the validity of our

computational predictions of miR-204 downregulation in HNSCC

and suggest that it may possess tumor suppressor activity.

Predicted miR204 gene targets are significantly related
through their biological functions

Among the 1,088 putative miR-204 targets predicted in the

miRNOME, 34 mRNA transcripts that were significantly upregu-

lated in HNSCC (GSE6631) led to the enrichment of miR-204

(Figure 2A and Table 6 in Text S2). We first conducted statistical

functional enrichment analyses using Gene Ontology (GO) [28] and

found a number of biological processes (BP) and molecular functions

(MF) of GO were significantly enriched among 32 of the 34 miR-

204 gene targets (referred to as ‘‘functionally prioritized miR-204

targets’’) (Table 7 in Text S2, Materials and Methods, and Protocol

S1/Section C). We next examined mRNA expression status of 21

representative ‘‘functionally prioritized miR-204 targets’’ in four

laser capture microdissected HNSCC tumor samples and observed

increased expression of 18 of these genes compared with their

respective expression in five pooled normal buccal mucosa

(Figure 2B). Additionally analysis of thirteen ‘‘functionally priori-

tized miR-204 targets’’, those enriched with the listed GO functions

(the table in Figure 2B, Materials and Methods), showed

overexpression of nine targets in ten HNSCC cell lines

(Figure 2C). These results indicate that predicted miR-204 targets,

upregulated in HNSCC, share similar functions and may

participate in similar biological processes.

miR-204 suppresses the expression of its functionally
prioritized targets

To provide evidence that miR-204 can directly suppress the

expression of its predicted targets in HNSCC, examination of the

39UTR confirmed that all 34 predicted target genes contain at least

one miR-204 binding site as expected by our predictions using

sequence homology databases of the miRNOME (Table 8 in Text

S2, and Materials and Methods). Thereafter, we selected 21

‘‘functionally prioritized miR-204 targets’’ overexpressed in

Network Modeling of microRNA Function in Cancer
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Figure 1. Combining genome-scale predictive strategies to predict and prioritize candidate microRNAs in HNSCC. (A) Enriched gene
targets of 46 microRNAs among inheritable cancer genes in OMIM are significantly overlapping with 34 predictions of deregulated microRNAs based
on HNSCC expression arrays (GSE6631, GSE2379; Figure S3; Table S2 and Table S3), yielding ten prioritized microRNAs (P = 2.3361024). P: Cumulative
hypergeometric Statistics. 1: miR-204 and let-7g are located in chromosomal regions with known increased genetic risk of HNSCC (9q21.1–22.1 for
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HNSCC (Figure 2B) for biological validation. We conducted in vitro

miR-204 gain-of-function analyses by transiently transfecting JSQ3

and SQ38 HNSCC cells with mature miR-204 mimics (Dharma-

con) to enhance miR-204 function in these two cell lines.

Restoration of miR-204 function achieved significant inhibition

(between 30% to 75%) of endogenous mRNA expression in 18 out

of 21 predicted targets examined for both cell lines, while non-

specific control mimics had no significant effect (Figure 2D and

Supporting Figures 4–5 in Text S1). The specificity of miR-204

mimics was further confirmed by unaltered expression of four

endogenous housekeeping genes (GUSB, HPRT1, HUPO and

PPIA) that lack target homology to miR-204 (Figure 2D and

Supporting Figure 4 in Text S1). Comparing with sequence-based

microRNA gene target prediction algorithms that have true positive

rates of about 40% [9,10], the accuracy of our prediction methods is

higher (,90%). Collectively, these observations indicate that down-

regulation of functionally related miR-204 targets upon miR-204

mimics treatment was sequence specific and was not due to artifacts

of transfection or the ‘‘off target’’ effect of miR-204 mimics.

miR-204 gene targets exhibit significant topological
properties in a HNSCC protein interaction network
predicted by network modeling

Following functional enrichment analysis of upregulated miR-

204 targets in HNSCC, we next examined the role of miR-204

targets in modulating the function of a protein-protein interaction

network (PPIN). To identify genome-wide changes in PPINs

associated with altered microRNA functions in HNSCC, we first

integrated seven protein-protein interaction databases (Materials

and Methods) and generated a ‘‘genome-scale PPIN’’ that contains

44,695 protein-protein interactions and 7,321 predicted human

genes targets for the 532 microRNAs in the miRNOME. We

subsequently could map 260 out of 382 (68%) up-regulated genes

in GSE6631 to the PPIN (refer to as ‘‘HNSCC PPIN’’), of which

24 were miR-204 targets predicted in miRNOME. We next

computed the empirical probability of interactions among these

260 genes in the network using permutation resampling (Materials

and Methods). To identify the most important interactions in the

HNSCC PPIN, we retained proteins for which the number of

observed interactions was significantly increased in single protein

network modeling as compared to those found in the empirical

distribution (Materials and Methods). As a result, we identified a

protein regulatory network in HNSCC consisting of 56 prioritized

upregulated genes in GSE6631 at a low false discovery rate of 7%

(Figure 3 and, Materials and Methods) (referred to as ‘‘prioritized

HNSCC PPIN’’). Among the 24 miR-204 targets mapped to the

genome-scale PPIN, seven were present in the ‘‘prioritized

HNSCC PPIN’’ (Figure 3, shown in red). Further, six of the

seven-miR-204 targets remained prioritized when computed using

different network modeling conditions demonstrating the robust-

ness of our analyses (not shown, and Materials and Methods).

We next analyzed two topological features of the PPIN: the

‘‘hub’’ and ‘‘bottleneck’’ properties. ‘‘Hubs’’, the highly connected

node proteins, and ‘‘bottlenecks’’, the key connector proteins, are

central to controlling the connectivity of biological sub-networks to

one another [29]. Further, our prior studies showed proteins

possessing both properties (hub-bottleneck) as essential and

efficient network components to alter the functional output of a

PPIN upon their dynamic changes in gene expression [30]. Here,

we observed significant enrichment of hubs, bottlenecks, and hub-

bottleneck proteins in the 56-gene ‘‘prioritized HNSCC PPIN’’ as

compared to either the ‘‘genome-scale PPIN’’ or to the ‘‘HNSCC

PPIN’’ (hub: P = 8.761028; bottleneck: P = 7.3161027; hub-

bottleneck: P = 1.6161028; Materials and Methods). Additionally,

the proportion of hub-bottleneck genes was further enriched

among the seven miR-204 targets present in the ‘‘prioritized

HNSCC PPIN’’ (P = 0.002; Fisher’s exact test, MMP9, SHC1,

CDC25B and AURKB in Figures 3A–B). Moreover, in a genome-

scale analysis, we observed a statistically significant association

between the proteins that exhibit PPIN network topology, such as

hub and bottleneck properties, and the number of predicted

microRNA targets. Indeed, bottleneck proteins and hub-bottle-

neck protein of the ‘‘genome-scale PPIN’’ were both targeted on

average by more microRNAs than those that are neither

bottleneck nor hub-bottleneck (bottleneck: P = 0.0009; hub-

bottleneck: P = 0.022, Materials and Methods). These results

indicate that the enrichment of bottleneck and hub-bottleneck

properties among miR-204 gene targets in the ‘‘prioritized

HNSCC PPIN’’ is a system’s property of microRNAs. They also

suggest that the efficiency and specificity of microRNAs in

regulating biological functions is further strengthened through

alteration of the translation of these bottleneck proteins.

In a protein-protein interaction network, proteins that are

tightly linked are likely to function in the same biological process

or pathways [31,32]. To characterize functional relationships

among the 56 interacting proteins in the ‘‘prioritized HNSCC

PPIN’’, we conducted statistical enrichment analysis using Gene

Ontology (Materials and Methods, Protocol S1/Section C). The

biological processes (BP) and molecular functions (MF) enriched in

this network (Figure 3C, Materials and Methods) overlapped with

our findings of functional enrichment among 34 predicted miR-

204 targets (Figures 2B–C). Two EGFR-dependent regulatory

sub-networks were identified: cell cycle regulation and extracellu-

lar matrix (ECM) remodeling/Cell-matrix adhesion (Figure 3C).

Based on the importance of hub-bottleneck genes in regulating the

function of a PPIN [33], the enrichment of four hub-bottlenecks

miR-204 targets in the EGFR-dependent ‘‘prioritized HNSCC

PPIN’’ predicts that their up-regulation upon miR-204 suppres-

sion in HNSCC could significantly augment cell cycle and

extracellular matrix remodeling.

miR-204 suppressed HNSCC cell migration, adhesion and
invasion in vitro and lung colonization in vivo

Among miR-204 gene targets that are potential regulators of

cell-matrix interaction and proteolysis, overexpression of APRC1B

[34], CTSC [35], FAP [36], MMPs [37], BMP1 [38], CDH11

miR-204 and 3p21 for let-7g, respectively) [15]. (B–C) mRNA expression of TRPM3, the host gene of miR-204, is significantly downregulated and is
barely detectable in four microdissected head and neck tumors (B) and in a panel of ten low passage HNSCC cell lines [26] (C). TRPM3 mRNA
expression was determined by qRT-PCR and normalized with the TBP endogenous gene control. Triplicate real time PCR measurements were
obtained and the mean Ct (cycle threshold) was used to calculate RQ values. Standard deviation of the triplicate measurement was less than 0.15 Ct.
Shown are relative tumor TRPM3 mRNA expression levels compared with five pooled normal buccal mucosa. (D–F) Quantification of miR-204
expression by Taqman qPCR in four laser micro-captured head and neck tumors (D), in ten HNSCC cell lines (E) and in three Burkitt’s B-cell lymphoma
cell lines (F). Five equally pooled normal buccal mucosa RNAs were used as the normal control for HNSCC tumors and cell lines. Normal B cell RNA
was used as the normal control for Burkitt’s B-cell lymphoma. (G) Comparison of miR-204 expression between six types of human epithelial cancers
tissues and their respective normal tissues was conducted using the microRNA profiling dataset GSE2564 [18] (P-values were calculated using two-tail
unpaired t-test; ‘‘n’’ indicates number of patients; error bars represent mean 6 standard error of the mean, Materials and Methods).
doi:10.1371/journal.pcbi.1000730.g001
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[39] and ITGB4 [40] is associated with cancer metastasis and/or

poor prognosis. Therefore, we evaluated the role of miR-204 in

HNSCC tumor progression. For these studies, we selected JSQ3

and SQ38 HNSCC cell lines for in vitro and SQ38 for in vivo

characterization. The two cell lines were derived from nasal cavity

and sinus HNSCC tumors, respectively (Table 5 in Text S2) [26].

In vitro, ectopic restoration of miR-204 function by miR-204

mimics had no effect on the viability and proliferation of the two

cell lines (Supporting Figure 6 in Text S1). In contrast, increased

miR-204 function led to a significant inhibition (P,0.05) of the

ability of JSQ3 and SQ38 cells to adhere to laminin-rich basement

membrane (Figure 4A), to migrate through porous Transwell

(Figure 4B), and to invade through Matrigel-coated basement

membrane (Figure 4C). These results demonstrate that increased

miR-204 function via its synthetic mimics is sufficient to suppress

cell-matrix interaction, motility and invasiveness in vitro.

To assess whether miR-204 could inhibit HNSCC tumor

metastasis in vivo, we increased miR-204 function in SQ38 with

miR-204 mimics treatments for three days prior to tumor

transplantation. We employed an experimental model of lung

metastasis by tail vein injection of tumor cells allowing

characterization of tumor cell extravasation and colonization in

the lung. For conducting in vivo fluorescent imaging analysis, we

generated SQ38 cells stably expressing high levels of GFP

fluorescent protein (Materials and Methods). To initiate the study,

one million of GFP-SQ38 cells transfected with either control

mimics or miR-204 mimics were transplanted into athymic mice

via tail-vein injection. GFP-SQ38 micrometastatic foci developed

in the lung over a period of three weeks were scored lobe by lobe

for each freshly isolated lung under fluorescent stereoscope

(Materials and Methods). Control mimics-treated SQ38 cells

efficiently extravasated, established micro-metastases in 100% of

animals and produced a mean number of lung metastatic foci of

75 on the whole lung surface. In drastic contrast, 50% of animals

(7 out of 14) receiving miR-204 mimics treated SQ38 cells failed to

develop any lung metastasis (Figure 4D–E and not shown), while

the other 50% of animals developed significantly less GFP-SQ38

lung foci at this early three-week time point (P = 0.011 Figure 4E).

Moreover, consistent with the predicted role of miR-204 targets

AURKB and CDC25B as hub/bottleneck regulators of the cell

cycle sub-network (Figure 3), restoration of miR-204 function in

vivo significantly decreased the number of Ki-67 positive

proliferating single SQ38 cells (indicated by *) and micro-foci

(indicated by arrows) in the paraffin embedded lung sections

(P = 0.001, Figure 4F). Moreover, Ki-67 positive SQ38 cells that

received miR-204 mimics treatment were mostly single-cell foci

and were in striking contrast to the multi-cell foci observed in the

lungs of control mimics treatment group (Figure 4F). Taken

together, these observations indicate that miR-204 can signifi-

cantly suppress experimental lung metastasis of SQ38 HNSCC

tumors, thereby acting as a potent suppressor of metastasis.

The novelty of our illustration of metastatic suppressor functions

of miR-204 in head and neck cancer and its relevance to

metastasis stems from our demonstration of miR-204 function at

multiple scales of biology that collectively show its potential as a

key regulator microRNA. Definitive demonstration of the role of

miR-204 in head and neck progression requires future studies

using cohorts of head and neck tumors.

Expression pattern of 19 miR-204 targets identified a
subtype of HNSCC tumors exhibiting an EGFR-pathway
signature and predicted earlier relapse

To explore the clinical relevance of miR-204 down regulation in

HNSCC, we conducted an unbiased hierarchical clustering

analysis of 60 HNSCC tumors harvested from representative

anatomical sites of HNSCC in GSE686 [41] based on the mRNA

expression pattern of 34 miR-204 targets identified in GSE6631

[21] (Materials and Methods). The original study reported a 582-

gene signature set in GSE686 that classified this set of tumors into

four distinct groups: (1) an EGFR-pathway signature subtype, (2) a

mesenchymal-enriched subtype, (3) a normal epithelial-like

subtype, and (4) a subtype with a high level of antioxidant

enzymes [41]. Hierarchical clustering using 19-upregulated genes,

a subset of miR-204 targets that could be mapped to this dataset,

identified two clusters (Figure 5). Tumors in Cluster A were

enriched with the EGFR signature and correspond to Group 1 of

the classification of Chung et al. (P,0.0001). In comparison,

tumors in Cluster B were enriched with the Group 3 ‘‘normal

epithelium-like subtype’’ tumors (P,0.011) [41]. This is consistent

with our observation that miR-204 targets were hub-bottleneck

regulators of an EGFR-dependent regulatory network in HNSCC

(Figure 3). Further, consistent with the prognostic capability of a

582-gene signature set reported by Chung et al. [41], Cluster A

showed overall earlier relapse than Cluster B (Figure S7). The fact

that very comparable prognostic predictions can be derived using

only 19 miR-204 gene targets suggest a potentially important role

of miR-204 in HNSCC prognosis and merits further investigation

and validation using a larger cohort of HNSCC tumor samples

with well-characterized clinical outcomes.

Discussion

Here, we developed an efficient combined computational and

biological approach to predict and to prioritize cancer microRNAs

for biological investigation. We demonstrated this strategy as an

effective economical alternative to comprehensive microRNA

analysis in cancers such as HNSCC for which prior genomic array

datasets (mRNA or microRNA) are less abundant. This approach

also allowed the identification of functional gene targets of the

deregulated microRNAs that would otherwise require paired

profiling of mRNA and microRNA expression for which the

feasibility is often limited by the additional costs, or by the lack of

access to the tissue. Employing this method that integrates the

analysis of microRNA target predictions, differential HNSCC

gene expression and the cancer genes in the OMIM genetic

dataset, we identified and characterized miR-204, located within

its host gene TRPM3 at the 9q21.1–q22.3 region frequently

incurring allelic loss [11–15], as a potential tumor suppressor

Figure 2. Predicted targets of miR-204 in HNSCC are significantly related via their molecular or biological functions. (A) Enrichment
of 34 miR-204 gene targets between 382 differentially upregulated HNSCC genes (GSE6631) and 1088 putative miR-204 targets predicted by
sequence-based microRNA target prediction databases (miRNOME); (B–C) Determination of mRNA expression of ‘‘functionally prioritized miR-204
targets’’ in four laser-microdissected HNSCC tumor samples (B) and in 10 HNSCC cell lines (C) by qPCR as described above in Figure 1 and in Materials
and Methods). Five equally pooled normal buccal mucosa RNAs were used as the normal control. Legend: red line (RQ = 1) is the expression of the
TBP endogenous gene control; error bars represent standard error of the mean; shaded squares in the GO table indicate gene targets in the
corresponding ‘‘biological processes’’ (BP) and ‘‘molecular functions’’ (MF) of Gene Ontology (GO); adjusted P-values indicate the combined statistical
enrichment of these genes in GO (Materials and Methods). (D) Ectopic enhancement of miR-204 function inhibited its predicted gene targets mRNA
expression in JSQ3 HNSCC cell line. TBP expression was used as an endogenous gene control for normalization (red line) in the qPCR analysis.
doi:10.1371/journal.pcbi.1000730.g002
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Figure 3. miR-204 gene targets exhibit significant topological properties in a predicted protein interaction network of HNSCC based on
single protein network modeling. (A–B) A 56-gene ‘‘prioritized HNSCC PPIN’’ was predicted from single protein network modeling and was
significantly enriched with bottleneck (P = 7.361027), hub (P = 8.761028) and hub-bottleneck genes (P = 1.661028). P-values were calculated using one-
tailed cumulative hypergeometric tests. Genes colored in red: miR-204 gene targets. (C) Gene Ontology enrichment analysis of the ‘‘biological processes’’
(BP) and ‘‘molecular functions’’ (MF) identified two EGFR-dependent sub-networks in the ‘‘prioritized HNSCC PPIN’’ (adjusted P,0.05). Different BPs and MFs
were coded by colors as indicated. Every gene analyzed in the network are represented as circles, the majority do not reach statistical significance and
remain as unnamed grey dots on the bottom of the figure (statistical details and names are provided in Table S11, and their interactions in Table S12).
doi:10.1371/journal.pcbi.1000730.g003
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Figure 4. miR-204 suppressed HNSCC cell migration, adhesion and invasion in vitro and lung colonization in vivo. (A–C) Ectopic
enhancement of miR-204 function inhibited JSQ3 and SQ38 adhesion to laminaI or basement membrane complex (BMC) (A), migration through the
porous membrane in Transwell (B), and invasion through Matrigel (C). Triplicate repeats were conducted at experimental point for A (Methods). For
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microRNA of HNSCC and possibly of other epithelial cancers.

The high propensity of LOH at 9q21.1–q22.3 that occurs in 37%

HNSCC pre-malignant conditions, further increases to 67% in

cancer state [14] suggesting the presence of tumor suppressor gene

candidates. While tumor suppressor genes at other frequent allelic

loss loci in HNSCC have been identified, gene candidates

responsible for the tumor suppressor activity associated with the

9q21 locus remain elusive. Here, we provided a plausible

mechanism that loss of tumor suppressor function of miR-204 as

a result of allelic imbalance at 9q21.1–q22.3 may significantly

increases the genetic susceptibility to HNSCC oncogenesis and

progression. LOH at this locus is also seen in the squamous cell

carcinoma (SCC) of the esophagus [42] and SCC of the lung [43]

suggesting a common somatic genetic lesion underlies the

development of SCC of diverse tissue origin. The highly

coordinated and nearly complete suppression of miR-204 and its

host gene TRPM3 (Figure 1B–E) raises the possibility that

TRPM3 mRNA expression may serve as a marker to indicate

miR-204 expression status in HNSCC or other tumors, and also

potentially LOH at 9q21.1–q22.3. Since a small variation in the

expression of a specific microRNA is expected to affect the

expression of tens or hundreds of target mRNAs, genetic

variations in a microRNA expression at the chromosomal break

point, as we observed with miR-204 at the 9q21.1–q22.3 locus,

could represent an effective mechanism of cancer predisposition, a

hypothesis that is supported by emerging experimental evidences

[44,45]. A few recent studies have reported genome-wide

microRNA expression changes using HNSCC cancer cell lines

[46–49] or tumor tissues [49–51]. While similar miR-204 down-

regualtion was reported in head and neck cancer cell lines based

on microarray analysis [46,48], its expression status was not

further confirmed by PCR or other methods and its biological

functions were not explored. Additionally, since its identification

[24] biological characterization of miR-204 functions in normal

development remain limited. Thus far, miR-204 was implicated in

affecting global mRNA expression levels in the retina [52]; and

was shown to regulate mesenchymal progenitor cell differentiation

[53].

B and C, cells migrated to the basal side of the porous membrane was visualized with a Zeiss Axiovert microscope at 620 magnification. 10 random
fields from three replicate wells were counted and the number of cells that had migrated or invaded was presented as number of cells counted per
field of the porous membrane (Materials and Methods). Error bars represent mean6standard error of the mean (SEM); P-values were obtained using a
one-tail t-test with unequal variance. (D–E) Restoration of miR-204 function by miR-204 mimics treatment significantly attenuated GFP-SQ38 tumor
lung colonization. Total number of GFP-SQ38 lung surface foci was counted lobe by lobe using a Leica fluorescent stereoscope under 46
magnification [D(i) and E(iii)] in a total of 28 mice. A magnified view (86) of the insert in E(i) is shown in D(ii) (top). Scale bar: 100 mm, Error bars
represent mean6SEM. (F) Restoration of miR-204 function significantly decreased Ki-67 positive SQ38 cells in the lung. Ki-67 positive cells in each
section were counted in 10 randomly chosen fields (406) and six specimens in each experimental group were used (left panel). Error bars represent
mean 6 SEM; In (E) and (F), P-values were calculated based on unpaired one-tailed Mann-Whitney test. The image is a representation of a
microscopic field (right panel). * indicates single-cell GFP-SQ38 foci; arrows indicate multi-cell GFP-SQ38 foci.
doi:10.1371/journal.pcbi.1000730.g004

Figure 5. Expression pattern of miR-204 targets identified a subtype of HNSCC tumors exhibiting an EGFR-pathway signature and
miR-204 was deregulated in other squamous and epithelial tumors. miR-204 functional targets classified 60 HNSCC tumors in (GSE686) [41]
microarray based on their intrinsic properties (Methods). P-values were obtained using a Fisher’s exact test; *: censored data.
doi:10.1371/journal.pcbi.1000730.g005
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Through enrichment analysis and network modeling using

mRNA gene expression profile, we identified a set of functionally

related miR-204 targets that showed increased mRNA expression

in HNSCC upon miR-204 suppression (Figures 2A–C). The

presence of miR-204 binding sites (Table 8 in Text S2), the

coordinated up-regulation and the ability of increased miR-204

function to specifically inhibit the expression of 18 out of 21 gene

targets (86%) (Figure 2D, Supporting Figures 4–5 in Text S1)

suggest that these predicted genes are very likely selective and

direct miR-204 targets in HNSCC. This finding is consistent with

the genome-wide association between microRNA binding sites

and the ability of corresponding targeting microRNAs to alter

their gene expression [54]. This is the first report of a large set of

functionally related cancer microRNA targets that was identified

via high throughput computational approaches and confirmed

biologically. In addition, the joint analyses of sequence-base

information and mRNA expression arrays yielded an accuracy

rate of 86% of miR-204 target predictions which surpasses the

published accuracy (about 40%) of each sequence-based method

when used alone [10,55,56].

More broadly, we demonstrated a computational framework for

predicting altered regulatory networks and biological functions

associated with differentially expressed microRNA targets. Indeed,

our combined systems biology approach uncovered previously

unknown connections between microRNA regulation, network

topology, and expression dynamics for which we obtained

thorough biological validations. While genome-scale analyses of

interactions among microRNA gene targets in the context of a

cellular or protein-protein interaction networks have been

conducted computationally [57–59], such methods and observa-

tions await biological confirmation. Here we significantly extended

the observations of two recent reports on network modeling

[31,32] and demonstrated the feasibility and validity of deploying

statistical and bioinformatics approaches to derive regulatory

networks corresponding to altered expression of proteins targeted

by microRNAs (Figure 3). Further, combining functional enrich-

ment analysis with network modeling leads to the unbiased

prioritization of an EGFR-dependent protein regulatory network

connected via up-regulated gene targets of microRNAs in human

HNSCC (Figure 3C). Topological analyses of hub and bottleneck

properties further identified key regulatory proteins within the

EGFR network (Figures 3A–B). miR-204 appeared critical to

regulate the function of this ‘‘prioritized HNSCC PPIN’’ as its

gene targets exhibited significant enrichment of hub and

bottleneck properties (Figures 3A–B). Since the EGFR network

was derived from overexpressed genes in HNSCC, the functional

enrichment of its 56 proteins suggests their positive regulation of

cell cycle, cell/matrix adhesion and extracellular matrix modeling.

Using this approach, the biological effect of altering the function of

a specific microRNA, such as miR-204, can be accurately

predicted via its gene targets that are key regulators of a protein

network. Accordingly, enhancement of miR-204 function inhib-

ited the expression of its functionally related gene targets (Figure

2D, Supporting Figures 4–5 in Text S1) in the ‘‘prioritized

HNSCC PPIN’’ and lead to the reduced adhesion, migration and

invasion in vitro (Figures 4A–C) and experimental lung metastasis in

vivo (Figures 4D–F). Further, the strong association of overexpres-

sion of functional miR-204 gene targets with an earlier relapse in a

sub-type of HNSCC tumors expressing an EGFR-pathway

signature (Figure 5) suggests that miR-204 expression and its

deregulated gene targets could be potentially used for mechanism-

based prognostic stratification of HNSCC patients to complement

the conventional clinical-pathological tumor diagnosis. In fact, the

feasibility of employing microRNA as sensitive and informative

biomarkers for molecular diagnosis has recently been demonstrat-

ed [60].

Collectively, these findings show that single protein network

modeling and statistical functional enrichment of a PPIN can

illuminate altered complex biological processes and regulatory

pathways associated with microRNA dysfunction in cancer with

high precision. Complementary approaches have been developed

to analyze gene expression changes in the molecular and biological

context for candidate gene prioritization and for deriving

mechanistic understandings that are most relevant to cancer

biology [61–64]. The system’s properties and microRNA-regulat-

ed molecular networks we discovered could be exploited for the

design of ‘‘network mechanism’’-based therapies to specifically

restore tumor suppressor microRNA functions as an alternative to

the single-gene target paradigm and merits further investigation.

Materials and Methods

Ethics statement
All animal works have been conducted according to IACUC

guidelines and were approved at the IACUC committee at the

University of Chicago. All research involving human participants

have been approved by the authors’ institutional review board.

Informed consent has been obtained.

Gene expression analysis of microarray data and
subsequent statistical analyses (Figure 1A, Figure 1G,
Figure 5 and Supporting Figure 3 in Text S1)

Microarray datasets were downloaded from NCBI GEO

database. The .cel file of HNSCC mRNA transcription array sets

GSE6631 [21] and GSE2379 [22] were processed using the

Bioconductor Package [65] implementation of GCRMA in R

Software [66]. To identify differentially expressed genes, SAM

analysis [67] was performed using paired T-test between the

HNSCC tumor and its corresponding paired normal tissue

obtained from the same patient. The criteria for gene selection

were fold change $2 and False Discovery Rate (FDR) #0.0006

(Figure1A and Supporting Figure 3 in Text S1).

The association of miR-204 targets with clinical parameters was

analyzed using HNSCC mRNA array set GSE686 [41]. The

intensity ratios of red to green channel of the predicted miR204

targets were retrieved from GSE686 dataset. Missing values were

assigned a constant value of 0. Redundant probes representing an

identical gene were reduced to a single one using the mean

expression value. The miR-204 targets predicted in Figure 2A and

filtered by coefficient of variation .0.3 were used for hierarchical

clustering. In Figure 5, the two-way hierarchical clustering was

conducted with the dChip software using its default parameters

(distance metric: 1-Pearson correlation; centroid linkage clustering)

[68], while the significance of the association between the

hierarchical clusters and molecular groups of HNSCC samples

[41] was determined by two-tailed Fisher’s exact test adjusted with

Bonferroni correction. The sample information file was obtained

from the Table S1 of Chung et al [41]. The time to recurrence

(termed relapse time), shown in Supporting Figure 7 in Text S1,

was analyzed with the Kaplan-Myer method using the Logrank

test of GraphPad Prism software (version 4) [69], and right

censoring was conducted for subjects alive at the end of the study

(subjects identified by ‘‘*’’ in Figure 5).

To determine the miR-204 expression status in epithelial

tumors (Figure 1G), the expression values of miR-204 were

extracted from microRNA array set GSE2564 [18]. Only six solid

tumor types, colon, kidney, prostate, uterus, lung and breast that

contained more than one samples in both tumor and the respective
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norm tissue were included in the analysis. Comparisons between

tumors and their respective normal tissues were performed by

unpaired two-tail t-test with unequal variances.

Prediction of HNSCC down-regulated microRNAs from
public gene expression profiles and putative microRNA
target genes (Table 1 in Text S2, Table 9 in Text S2)

Generation of an integrated human microRNA target

database-miRNOME. We generated an integrated and com-

prehensive human microRNA target database, ‘‘miRNOME’’, by

merging five microRNA target datasets: TargetScan [10],

PicTar4way [70], miRBase [56], miRanda [55] and TarBase

[71] (integration details provided in Table 9 in Text S2). Down-

loaded versions are described in Table 1 in Text S2. miRNOME

contains 534 distinct human microRNAs, 17,343 predicted

putative microRNA gene targets and 444,558 distinct

microRNA-Target relationships. Specifically, 5110 distinct genes

in GSE6631 and 5131 distinct genes in GSE2379 are respectively

targeted by 531 and 530 microRNAs in the miRNOME.

Imputed microRNA regulation based on weighted ranked

expression and putative microRNA targets (IMRE) (Figure

1A, Supporting Figure 2 in Text S1, and Table 2 in Text

S2). We developed a novel prioritization method (Supporting

Figure 2 in Text S1) to predict microRNA regulation from

genome-wide gene expression and microRNA putative targets

predicted by the miRNOME database. Using the expression of

putative targets of microRNAs in miRNOME, we calculate a P-

value for each microRNA representing their potential deregulation

between the cancer and normal tissue conditions. The method

development and procedures for conducting IMRE analysis are

detailed below:

Filtering. After GCRMA normalization, about half the genes

were filtered out according to the following criteria: i) probes

whose average expression intensity are below the average

background intensity, or ii) the probes whose inter quartile range

(IQR) are lower than the median of the rest probe-set’s IQR

because they are less likely to be differentially expressed, and/or

iii) to control for the bias of multiple probes per gene, the probe-

sets with the largest IQR value were retained and the others were

removed for the genes with multiple probe-sets.

Expression processing. In sample j containing a total of G genes,

each gene x is ranked by expression as rx,j M {1, 2…G}, and scored

according to an exponential weighted Sx,j (Equation 1) using an

approach that we previously described to compare gene expression

lists (OrderedList [72] method of Bioconductor [73]).

Sx,j~ rx,j

� �
| e

rx,j
G

� �
ð1Þ

Prediction of microRNA target regulation. The contribution of a

microRNA mi regulation of gene expression to a single sample j is

imputed by calculating the difference between the centroid of

weighted rank expression (WRE) of its targets according to the

miRNOME (CTi,j
, Equation 2) with that of non-targeted genes

(CNi,j
, Equation 2), referred to as DCWRE (Equation 3); where Ti,j

is the target gene-set of microRNA (mi), and N i,j is the non-target

gene-set of this microRNA. Further, the scores are adjusted for the

cardinality (count of genes) of each gene-set (e.g. cardinality of Ti,j

is | Ti,j |; Equation 3). DCWRE follows a normal distribution in

both GSE6631 and GSE2379 (data not shown). An empirical

Student T-test for unequal variances was performed to compare

DCWREi
for each microRNA mi between cancer and normal tissue

(Bioconductor package twilight, 1,000 permutation resampling,

‘‘paired t-test’’for GSE6631, ‘‘unpaired t-test’’ for GSE2379 [74]).

To adjust for multiple comparisons (different microRNAs on the

same dataset), we calculate a Benjamini and Hochberg false

discovery rate (FDR) from the P-values of Equation 4 and used a

5% threshold for significance [75]. The IMRE algorithm written

in R language and bioconductor is made available at http://www.

lussierlab.org/IMRE.

CTi,j
~

1

DTi,j D

X
x[Ti,j

(Sx,j) and CNi,j
~

1

DNi,j D

X
x[Ni,j

(Sx,j)ð2Þ

DCWREi
~CTi,j

{CNi,j
ð3Þ

Prediction of microRNAs deregulated in cancers from
enrichment analysis of inheritable cancer genes in OMIM
(Figure 1A, and Table 3 in Text S2)

MicroRNAs most likely to regulate a large number of specific

inheritable cancer genes were predicted using an enrichment

statistics. The Online Mendelian Inheritance in Man (OMIM)

[76] is a semistructure database in which we computationally

coded cancer genes (OncoMIM, Protocol S1/Section A) to a

clinical nomenclature and mined with statistical enrichment to

predict microRNAs that could deregulate a large number of genes,

each associated with a certain type of cancer. OncoMIM contains

610 biologically validated or clinically demonstrated inheritable

cancer genes among which 586 (96%) are predicted targets of 527

microRNAs in the miRNOME, from which we can calculate

significantly enriched microRNAs.

The cumulative hypergeometric distribution (Equation 4) was

applied to identify significantly enriched microRNAs. We

calculated the P-values based on the Equation 4 with the

following variables: N is the number of OMIM genes also found

in the miRNOME (3232 for anatomy, 2181 for disease), M is the

number of genes associated to a specific cancer term in OncoMIM

and also targeted by any microRNAs in the miRNOME, n

represents the number of genes targeted by a specific microRNA

in the miRNOME and also found in OncoMIM associated to any

cancer term, m is the number of genes associated to both a specific

cancer term in OncoMIM and to a specific microRNA in the

miRNOME (m = M>n).

p(iw~mDN,M,n,m)~
Xn

i~m

M

i

� �
N{M

n{i

� �

N

n

� � ð4Þ

To control p in Equation 4 for multiple comparisons, we

applied the Bonferroni-type adjustment method known as Šidák

single-step adjusted P-value for multiple comparisons (Equation 5)

[77]. Significant correlations are first refined to remove false

positive signals inherited in the hierarchies of the clinical

nomenclature (Protocol S1/Section B) and then adjusted P-values

(p9) are less than 0.05 (n = number of comparisons, p taken from

Equation 4)

p’~1{(1{p)n ð5Þ
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Refinement of the hierarchical P-values in enrichment of
GO or of SNOMED terms (Supporting Figure 8 in Text S1,
Protocol S1/Section B)

We developed an algorithm to identify and filter out false

positive P-values derived from enrichment studies in ontologies

(hierarchical classifications) due to the inheritance of genes in

ancestry classes of a significantly enriched class [78,79] (Support-

ing Figure 8 in Text S1, Protocol S1/ection B).

Review of literature of deregulated microRNA in cancer
(Supporting Figure 3 in Text S1, Table 4 in Text S2)

A gold standard of microRNAs deregulated in cancers was

derived from the literature and was used to evaluate microRNA

predictions in from OMIM cancer genes (Supporting Figure 3 in

Text S1).

Prioritized HNSCC PPIN using Single Protein Network
Modeling in a protein-protein interaction network
(Figure 3 and Tables 10–12 in Text S2)

Datasets used to construct the protein-protein interaction

network (Figure 3, Table 10 in Text S2, Protocol S1/Section

D). The protein-protein interaction network (PPIN) was

generated by integrating seven protein interactions and signaling

datasets. Protein interactions from each dataset were standardized

to a two-column list of pair wise interactions between SwissProt

accession IDs, with an additional column providing the source

dataset and references to the literature when available. An

overview of the seven datasets used in this study is provided in

Table 10 in Text S2, while the details of the integration process is

provided in Protocol S1/Section D.

Generation of protein-protein interaction network.

Homo sapiens data was retained from BIND, BioGRID, DIP,

HPRD, KEGG, MINT, and Reactome. Postulated interactions in

Homo sapiens based on Yeast Two-Hybrid experiments were

excluded. Identifiers were converted to a common SwissProt

standard coding using translation tables from HGNC (Table 9 in

Text S2) and the data sources’ own cross-mappings.

Conservative permutation re-sampling of the

PPIN. Permuted PPIN networks were generated using a link

randomization approach [80]. Proteins are considered as nodes,

and interactions between proteins are links. Since biological

networks are scale free rather than random [81,82], link-

randomization can create conservative ‘‘permuted networks’’ as

controls, from which we can derive an empirical distribution of

interactions between a subset of proteins. Furthermore, our

implementation of a link-randomization conserves the number of

‘‘connections’’ of each protein (node-degree [81–83]). Thus the

scale free properties of the original distribution are preserved in

every permutation as well as the node degree of each specific

protein, while the interactions (links) between these proteins vary.

Self- interactions, such as those formed by homomultimers, were

ignored to avoid introducing bias into the network. Duplicate

protein interaction pairs were also excluded in the permutation.

10,000 of these permuted networks were generated from the

original amalgamated interaction network consisting of real

datasets.

Single Protein Network Modeling and Prioritized HNSCC

PPIN (Figure 3 and Tables 11–12 in Text S2). Additionally,

we developed a model that estimates the probability of occurrence

of an observed Single Protein Network arising from the

upregulated gene list between HNSCC and normal paired tissue

in GSE6631. Each of these unregulated HNSCC gene was

translated to its corresponding protein identifier in the network

(HNSCC protein). Each HNSCC protein was mapped to each of

the rest HNSCC proteins according to existing pairs of protein

interactions in the original PPIN yielding an Observed number of

distinct Protein Interactions (Observed count of PI). Thereafter,

the same procedure was applied to the 10,000 permuted PPINs

yielding control counts of distinct protein interactions for each of

the UG (Control count of PI). Since each HNSCC protein had a

constant node degree in each permutation (see the previous

paragraph), this procedure controlled properly for HNSCC

proteins having more protein interactions than others thus

providing no statistical advantage to those better connected

proteins (such as hub or bottleneck proteins). For each HNSCC

protein, a P-value was assigned by measuring the frequency at

which the ‘‘Observed count of PI’’ of that HNSCC protein

occurred in the empirical distribution of 10,000 ‘‘Control count of

PI’’ for these specific HNSCC proteins (Table 11 in Text S2).

Each HNSCC proteins were subsequently ranked according to its

P-value. At each cutoff P-value, a certain number of HNSCC

proteins were prioritized. Consequently, a FDR of the prioritized

HNSCC proteins (FDR of prioritized proteins) was calculated by

dividing the median number of proteins prioritized at that cutoff in

the empirical distributions of permuted PPINs divided by the

observed number of prioritized HNSCC proteins in the real PPIN.

We refer to this approach as single protein analysis in the network

(SPAN).

A similar procedure was developed to calculate the FDR over a

pair of protein interactors among the observed prioritized

HNSCC proteins (FDR of links). A ‘‘Prioritized HNSCC PPIN’’

(Figure 3) was predicted from SPAN in the ‘‘genome-scale PPIN’’

with a FDR of 7.14% for the links between labeled genes and of

10.15% for upregulated HNSCC genes in GSE6631. The

resulting network was drawn using Cytoscape [84]. Details on

the protein interaction dataset supporting each pair of protein

interactions are provided in Table 12 in Text S2. Hubs in the

PPIN are defined as the top 20% of proteins’ node degree (grey

nodes in Figure 3A). Similarly, the bottlenecks (grey nodes in

Figure 3B) are defined as proteins are the top 20% betweenness

score calculated using the ‘‘betweenness.c’’ program we developed

(http://www.gersteinlab.org/proj/bottleneck/) [30]. 10.4% of the

PPIN proteins were observed to have both hub and bottleneck

properties. Enrichment studies of hub, bottleneck and hub-

bottleneck proteins presented in Figure 3 have been conducted

using one-tailed cumulative hypergeometric distribution.

Enrichment of Hub and Bottleneck Proteins in the

HNSCC PPIN associated with microRNA targeting

(Figure 3A–B). To determine whether microRNA targets in

the HNSCC PPIN exhibit the genome-wide systems’ properties of

‘‘hub’’ and ‘‘bottleneck’’ and their enrichment, we calculated the

proportion of hub and of bottleneck proteins among microRNA

targets present in the HNSCC PPIN for each microRNAs in the

miRNOME. Thereafter, we conducted a non-parametric

Wilcoxon Signed Rank Test comparing this frequency with the

theoretic expectation that derives from a random draw (as defined

in the previous paragraph: 20%).

Using the miRNOME, we also calculated the number of

distinct microRNAs that could potentially target the genes

encoding for each protein of the PPIN. We subsequently obtained

enrichment statistics of the hub and bottleneck properties related

to microRNA regulation by comparing the count of microRNAs

between hub proteins and non-hub proteins, between bottleneck

and non-bottleneck proteins, as well as between hub-bottleneck

and non hub-bottleneck proteins using the non-parametric Mann

Whitney test. Calculations of these statistics were conducted with

the GraphPad Prism software (version 4) [69].
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Functional enrichment analysis of miR-204 targets and
PPIN using Gene Ontology (Figures 2B–C, Figure 3C,
Table 7 in Text S2, Protocol S1/Section C)

To provide insights into biological functions and processes

potentially regulated by miR-204 in HNSCC, we conducted

standard statistical enrichment analyses based on the functional

assignments of gene in Gene Ontology (GO) [28] to infer

significantly deregulated functions associated with altered miR 204

target expression in the HNSCC according to their presence in the

miRNOME and/or the PPINs (details in Protocol S1/Section C).

Generation of Head and neck cancer cell lines and cell
culture

We previously established 10 low passage human head and neck

squamous cell carcinoma lines (HNSCC) (SCC25, SCC35, SCC58,

SCC61, SCC135, SCC151, SQ20B, SQ38, and JSQ3), from head

and neck tumor specimens of different head and neck primary sites

[26]. This panel of cell lines was established from head and neck

tumor specimens of different primary sites and most of the patients

quickly developed local failure and eventually died of the disease

[26]. Nu61 was derived from SCC61 tumors that developed

radioresistance after serial passage and radiation treatment in vivo

[85]. All cell lines were cultured and maintained in 1:1 DME/F12

supplemented with high glucose and 10% fetal bovine serum. GFP-

SQ38 cells were established via retroviral-mediated gene transfer

using pLEGFP-N1 retroviral vector (Clontech).

Quantitative RT-PCR Analysis of microRNA and mRNA
expression (Figure 1B–F, Supporting Figures 4–6 in Text
S1, and Table 13 in Text S2)

Total RNA from normal and tumor tissues of esophagus, lung

and cervix were obtained from the Ambion FirstChoice collection

of RNA that is compatible with both mRNA and microRNA

analysis.

Total RNA from HNSCC cell lines, tumors and normal tissues

was extracted and purified using TRIzol (Gibco/BRL) according

to manufacturer’s instructions. Tissues from primary HNSCC

tumors were obtained from surgical procedures performed at our

institution. Samples were snap frozen immediately in liquid

nitrogen and stored at 280 uC. Laser micro-dissection was

performed on frozen sections and approximately 10,000 cells were

captured for RNA extraction. Normal buccal mucosa was

obtained from healthy volunteers with no history of smoking

and drinking according to an approved open IRB protocol.

miR-204 expression was measured using TaqMan MicroRNA

quantitative PCR (qPCR) assay (Applied Biosystems) according to

manufacturer’s instructions.. Real-time PCR was carried out using

the Applied Biosystems 7900 Sequence Detector System (Applied

Biosystems). All qPCR reactions were run in triplicate. Human

TATA-binding protein (TBP) (Applied Biosystems) was used as an

endogenous control for miR-204 expression normalization. The

fold changes of miR-204 expression between normal and tumor

tissues or cell lines were calculated using the DDCt method of

relative comparison.

For mRNA expression quantification, First-strand cDNA

synthesis was carried out as above described except that random

primers were used for reverse transcription (High Capacity cDNA

Reverse Transcription Kit, Cat#4368814). Amplification of

predicted miR-204 targeted genes was performed by Sybr Green

qPCR assays using custom designed primers. Specific primers for

each gene were designed using Invitrogen D-LUX Designer

(https://orf.invitrogen.com/lux/) and sequences provided in

Table 13 in Text S2. The mean Ct (cycle threshold) was

calculated from the triplicates and used for the calculation of RQ

values. qPCR condition for each gene was optimized that so that

the standard error among the triplicates was ,0.15 Ct. TBP was

also used as endogenous control for data normalization. The fold

changes of target gene were calculated using the DDCt method of

relative comparison. In addition, as negative controls for the off

target effect of miR-204 mimics treatment, real time qPCR was

performed to include three additional endogenous controls: PPIA

(AB, Cat#4333763), GUSB (AB, Cat# 4333767) and, HPRT1

(Cat#4333768) using commercially designed Taqman gene

expression assays (Applied Biosystems). Quantitative mRNA

expression data were acquired and analyzed in either 96- or

384-well-plate format using an Applied Biosystems 7900 Sequence

Detector System (Applied Biosystems).

Increase miR-204 function by miRIDIAN mimics
treatment (Figure 2D and Figure 4)

40% confluent JSQ3 and SQ38 cells were transfected with 50–

200 nM Control [Cat#110CN-001000-01] or miR-204 miRI-

DIAN mimics [Cat#110C-300069-02](Dharmacon) using Oligo-

fectamine (Invitrogen). Transfection efficiency was optimized and

estimated to be .90%. Proliferation assay, cell adhesion assay.

Migration assay and Matrigel invasion assay were conducted at

72 hours after transfection. In vivo tail-vein injection of mimics

treated GFP-SQ38 cells was performed at 48h after transfection.

InnoCyte ECM Cell adhesion assay (Figure 4A)
Cell adhesion was measured using the InnoCyte ECM cell

adhesion assay kit (Calbiochem, Cat#CBA025) according to

manufacturer’s instructions. Control or miR-204 miRIDIAN

mimics treated JSQ3 and SQ38 cells were trypsinized and re-

suspended in fully supplemented medium. 20,000 cells and 15,000

cells were added to each well for JSQ3 and SQ38 cell lines,

respectively. Cells were incubated for 2h at 37 uC. The plates were

then washed with PBS to remove non-adherent cells. 100 ml Calcein-

AM was added to each well, incubated with cells for 1h at 37 uC, and

read with a fluorescent plate reader at an excitation wavelength of

,485 nm and an emission wavelength ,520 nm. Results were

expressed as percent of cell adhesion compared to that of control

mimics treated controls6standard error (SE) of 3 replicates.

Trans-well migration and invasion assays (Figure 4B,C)
Control or miR-204 miRIDIAN mimics treated JSQ3 and

SQ38 cells were trypsinized and re-suspended in fully supple-

mented medium. Cells were then seeded at 10,000 cells per well

for migration assay or at 20,000 cells per well for invasion assay

into trans-well inserts (8 mm pore size, BD Falcon). For invasion

assay, the trans-well inserts were coated with 60 mg/45 ml/well of

Matrigel (BD Falcon). Complete culture medium was used as

chemo-attractant in the lower chamber. The assays were taken

down with three PBS washes followed by fixation with 10%

formalin and staining with 1% crystal violet after 6h for migration

assay and 18h for invasion assay. The cells migrated to the basal

side of the porous membrane was visualized with a Zeiss Axiovert

microscope at 620 magnification. 10 random fields from three

replicate wells were counted and the number of cells that had

migrated or invaded was presented as number of cells counted per

field of the porous membrane.

Determination of cell proliferation (Supporting Figure 6
in Text S1)

Cell proliferation assays were conducted in 96-well format by

the MTT assay. Specifically, HNSCC cell lines were seeded at
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56103 cells/well in 96-well plates and let incubated for 24 hours

prior to treatment with control or miR-204 miRIDIAN mimics.

After drug or siRNA exposure, 10 ml of MTT reagent was added

to each well and incubated for 4h. The precipitates were dissolved

in 100 ml of stop solution overnight and proliferation rate was

determined by absorbance at 570 nm wavelengths with 690 nm as

the reference wavelength using a spectrophotometer.

Animal studies (Figure 4D)
Animal work was conducted in accordance with an approved

protocol. Age and weight-matched (4–6 weeks old weigh 18–20 g)

NCI athymic female mice were used for induction of experimental

lung metastasis via the tail-vein injection of tumor cells. GFP-

SQ38 cells were treated with miR-204 miRIDIAN mimics or non-

specific control mimics for 2 days prior to tumor cell inoculation.

16106 viable cells were re-suspended in 100 ml of PBS and

injected into the lateral tail vein. Metastatic colonization of lung by

GFP-SQ-38 cells was determined at 3 weeks post tumor injection.

Characterization and quantification of lung metastasis
(Figure 4E)

28 Mice were sacrificed on day 21 after tumor cell inoculation.

Lungs were perfused through tracheal with 2–3 ml of PBS, excised

and then fixed in 10% formalin for 12 hours. Prior to fixation with

formalin, lungs were examined under 46 magnification using

fluorescent stereoscope (Leica) and scored lobe by lobe for GFP-

SQ38 lung foci on the whole lung surface. Thereafter, the

University of Chicago Immunohistochemistry Core Facility

performed paraffin embedding, sectioning and H and E staining.

5-micron sections were stained with Ki-67 and Ki-67 positive SQ-

38 cells or micro-foci were scored under 406magnifications in 10

randomly selected fields for each section. A total of 6 lungs from

each treatment group were examined.
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