195 research outputs found
Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry
The wave front corrector is one of the three key elements in adaptive optics, along with the wave front sensor and the control computer. Low cost, compact deformable mirrors are increasingly available. We have tested the AOptix bimorph deformable mirror, originally developed for ultra-high bandwidth laser communication systems, to determine its suitability for vision science applications, where cornea and lens introduce optical aberrations. Measurements of the dynamic response of the mirror to a step input were obtained using a commercial Laser Doppler Vibrometer (LDV). A computer-controlled Twyman-Green interferometer was constructed to allow the surface height of the deformable mirror to be measured using Phase-Shifting Interferometry as a function of various control voltages. A simple open-loop control method was used to compute the control voltages required to generate aberration mode shapes described by the Zernike polynomials. Using this method, the ability of the deformable mirror to generate each mode shape was characterized by measuring the maximum amplitude and RMS error of each Zernike mode shape up to the fifth radial order. The maximum deformation amplitude was found to diminish with the square of the radial order of the Zernike mode, with a measured deformation of 8 microns and 1.5 microns achieved at the second-order and fifth-order Zernike modes, respectively. This deformation amplitude appears to be sufficient to allow the mirror to correct for aberrations up to the fifth order in the human eye
The Reform of Employee Compensation in China’s Industrial Enterprises
Although employee compensation reform in Chinese industrial sector has been discussed in the literature, the real changes in compensation system and pay practices have received insufficient attention and warrant further examination. This paper briefly reviews the pre- and post-reform compensation system, and reports the results of a survey of pay practices in the four major types of industrial enterprises in China. The research findings indicate that the type of enterprise ownership has little influence on general compensation practices, adoption of profit-sharing plans, and subsidy and allowance packages. In general, pay is linked more to individual performance and has become an important incentive to Chinese employees. However, differences are found across the enterprise types with regard to performance-related pay. Current pay practices are positively correlated to overall effectiveness of the enterprise
Primary Ciliary Dyskinesia Due to Microtubular Defects is Associated with Worse Lung Clearance Index
PURPOSE: Primary ciliary dyskinesia (PCD) is characterised by repeated upper and lower respiratory tract infections, neutrophilic airway inflammation and obstructive airway disease. Different ultrastructural ciliary defects may affect lung function decline to different degrees. Lung clearance index (LCI) is a marker of ventilation inhomogeneity that is raised in some but not all patients with PCD. We hypothesised that PCD patients with microtubular defects would have worse (higher) LCI than other PCD patients. METHODS: Spirometry and LCI were measured in 69 stable patients with PCD. Age at testing, age at diagnosis, ethnicity, ciliary ultrastructure, genetic screening result and any growth of Pseudomonas aeruginosa was recorded. RESULTS: Lung clearance index was more abnormal in PCD patients with microtubular defects (median 10.24) than those with dynein arm defects (median 8.3, p = 0.004) or normal ultrastructure (median 7.63, p = 0.0004). Age is correlated with LCI, with older patients having worse LCI values (p = 0.03, r = 0.3). CONCLUSION: This study shows that cilia microtubular defects are associated with worse LCI in PCD than dynein arm defects or normal ultrastructure. The patient's age at testing is also associated with a higher LCI. Patients at greater risk of obstructive lung disease should be considered for more aggressive management. Differences between patient groups may potentially open avenues for novel treatments
Combined impact of gray and superficial white matter abnormalities: Implications for epilepsy surgery
\ua9 2025 The Author(s). Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy. Objective: Drug-resistant focal epilepsy is associated with abnormalities in the brain in both gray matter (GM) and superficial white matter (SWM). However, it is unknown if both types of abnormalities are important in supporting seizures. Here, we test if surgical removal of GM and/or SWM abnormalities relates to post-surgical seizure outcome in people with temporal lobe epilepsy (TLE). Methods: We analyzed structural imaging data from 143 patients with TLE (pre-op diffusion magnetic resonance imaging and pre-op T1-weighted MRI) and 97 healthy controls. We calculated GM volume abnormalities and SWM mean diffusivity abnormalities and evaluated if their surgical removal distinguished seizure outcome groups post-surgically. Results: At a group level, GM and SWM abnormalities were most common in the ipsilateral temporal lobe and hippocampus in people with TLE. Analyzing both modalities together, compared to in isolation, improved surgical outcome discrimination (GM area under the curve [AUC] = 0.68, p < 0.01; WM AUC = 0.65, p < 0.01; Union AUC = 0.72, p < 0.01; Concordance AUC = 0.64, p = 0.04). In addition, 100% of people who had all concordant abnormal regions resected had International League Against Epilepsy (ILAE)1,2 outcomes. Significance: Resecting abnormalities in GM or SWM individually affects surgical outcomes but combining both provides clearer patient group distinctions. This approach improves outcome differentiation, showing higher rates of patients living without disabling seizures when all concordant abnormal regions are resected. These findings suggest that regions identified as abnormal from both diffusion-weighted and T1-weighted MRI are involved in the epileptogenic network and that resection of both types of abnormalities may enhance the chances of living without disabling seizures
Epileptogenic networks in extra temporal lobe epilepsy
\ua9 2023 Massachusetts Institute of Technology.Extra temporal lobe epilepsy (eTLE) may involve heterogenous widespread cerebral networks. We investigated the structural network of an eTLE cohort, at the postulated epileptogenic zone later surgically removed, as a network node: the resection zone (RZ). We hypothesized patients with an abnormal connection to/from the RZ to have proportionally increased abnormalities based on topological proximity to the RZ, in addition to poorer post-operative seizure outcome. Structural and diffusion MRI were collected for 22 eTLE patients pre-and post-surgery, and for 29 healthy controls. The structural connectivity of the RZ prior to surgery, measured via generalized fractional anisotropy (gFA), was compared with healthy controls. Abnormal connections were identified as those with substantially reduced gFA (z < −1.96). For patients with one or more abnormal connections to/from the RZ, connections with closer topological distance to the RZ had higher proportion of abnormalities. The minority of the seizure-free patients (3/11) had one or more abnormal connections, while most non-seizure-free patients (8/11) had abnormal connections to the RZ. Our data suggest that eTLE patients with one or more abnormal structural connections to/from the RZ had more proportional abnormal connections based on topological distance to the RZ and associated with reduced chance of seizure freedom post-surgery
Epileptogenic networks in extra temporal lobe epilepsy
Extra temporal lobe epilepsy (eTLE) may involve heterogenous widespread cerebral networks. We investigated the structural network of an eTLE cohort, at the postulated epileptogenic zone later surgically removed, as a network node: the resection zone (RZ). We hypothesized patients with an abnormal connection to/from the RZ to have proportionally increased abnormalities based on topological proximity to the RZ, in addition to poorer post-operative seizure outcome. Structural and diffusion MRI were collected for 22 eTLE patients pre-and post-surgery, and for 29 healthy controls. The structural connectivity of the RZ prior to surgery, measured via generalized fractional anisotropy (gFA), was compared with healthy controls. Abnormal connections were identified as those with substantially reduced gFA (z < −1.96). For patients with one or more abnormal connections to/from the RZ, connections with closer topological distance to the RZ had higher proportion of abnormalities. The minority of the seizure-free patients (3/11) had one or more abnormal connections, while most non-seizure-free patients (8/11) had abnormal connections to the RZ. Our data suggest that eTLE patients with one or more abnormal structural connections to/from the RZ had more proportional abnormal connections based on topological distance to the RZ and associated with reduced chance of seizure freedom post-surgery
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
The Imaging Database for Epilepsy And Surgery (IDEAS)
\ua9 2024 The Author(s). Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy. Objective: Magnetic resonance imaging (MRI) is a crucial tool for identifying brain abnormalities in a wide range of neurological disorders. In focal epilepsy, MRI is used to identify structural cerebral abnormalities. For covert lesions, machine learning and artificial intelligence (AI) algorithms may improve lesion detection if abnormalities are not evident on visual inspection. The success of this approach depends on the volume and quality of training data. Methods: Herein, we release an open-source data set of pre-processed MRI scans from 442 individuals with drug-refractory focal epilepsy who had neurosurgical resections and detailed demographic information. We also share scans from 100 healthy controls acquired on the same scanners. The MRI scan data include the preoperative three-dimensional (3D) T1 and, where available, 3D fluid-attenuated inversion recovery (FLAIR), as well as a manually inspected complete surface reconstruction and volumetric parcellations. Demographic information includes age, sex, age a onset of epilepsy, location of surgery, histopathology of resected specimen, occurrence and frequency of focal seizures with and without impairment of awareness, focal to bilateral tonic–clonic seizures, number of anti-seizure medications (ASMs) at time of surgery, and a total of 1764 patient years of post-surgical followup. Crucially, we also include resection masks delineated from post-surgical imaging. Results: To demonstrate the veracity of our data, we successfully replicated previous studies showing long-term outcomes of seizure freedom in the range of ~50%. Our imaging data replicate findings of group-level atrophy in patients compared to controls. Resection locations in the cohort were predominantly in the temporal and frontal lobes. Significance: We envisage that our data set, shared openly with the community, will catalyze the development and application of computational methods in clinical neurology
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Complementary structural and functional abnormalities to localise epileptogenic tissue
\ua9 2023 The Authors. Background: When investigating suitability for epilepsy surgery, people with drug-refractory focal epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be acquired to identify key white matter tracts for surgical avoidance. Here, we investigate whether structural connectivity abnormalities, inferred from dMRI, may be used in conjunction with functional iEEG abnormalities to aid localisation of the epileptogenic zone (EZ), improving surgical outcomes in epilepsy. Methods: We retrospectively investigated data from 43 patients (42% female) with epilepsy who had surgery following iEEG. Twenty-five patients (58%) were free from disabling seizures (ILAE 1 or 2) at one year. Interictal iEEG functional, and dMRI structural connectivity abnormalities were quantified by comparison to a normative map and healthy controls. We explored whether the resection of maximal abnormalities related to improved surgical outcomes, in both modalities individually and concurrently. Additionally, we suggest how connectivity abnormalities may inform the placement of iEEG electrodes pre-surgically using a patient case study. Findings: Seizure freedom was 15 times more likely in patients with resection of maximal connectivity and iEEG abnormalities (p = 0.008). Both modalities separately distinguished patient surgical outcome groups and when used simultaneously, a decision tree correctly separated 36 of 43 (84%) patients. Interpretation: Our results suggest that both connectivity and iEEG abnormalities may localise epileptogenic tissue, and that these two modalities may provide complementary information in pre-surgical evaluations. Funding: This research was funded by UKRI, CDT in Cloud Computing for Big Data, NIH, MRC, Wellcome Trust and Epilepsy Research UK
- …
