137 research outputs found

    Undifferentiated Connective Tissue Disease-Associated Interstitial Lung Disease: Changes in Lung Function

    Get PDF
    Undifferentiated connective tissue disease (UCTD) is a distinct clinical entity that may be accompanied by interstitial lung disease (ILD). The natural history of UCTD-ILD is unknown. We hypothesized that patients with UCTD-ILD would be more likely to have improvement in lung function than those with idiopathic pulmonary fibrosis (IPF) during longitudinal follow-up. We identified subjects enrolled in the UCSF ILD cohort study with a diagnosis of IPF or UCTD. The primary outcome compared the presence or absence of a ≥5% increase in percent predicted forced vital capacity (FVC) in IPF and UCTD. Regression models were used to account for potential confounding variables. Ninety subjects were identified; 59 subjects (30 IPF, 29 UCTD) had longitudinal pulmonary function data for inclusion in the analysis. After accounting for baseline pulmonary function tests, treatment, and duration between studies, UCTD was associated with substantial improvement in FVC (odds ratio = 8.23, 95% confidence interval, 1.27–53.2; p = 0.03) during follow-up (median, 8 months) compared with IPF. Patients with UCTD-ILD are more likely to have improved pulmonary function during follow-up than those with IPF. These findings demonstrate the clinical importance of identifying UCTD in patients presenting with an “idiopathic” interstitial pneumonia

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Examining the role of genetic risk and longitudinal transmission processes underlying maternal parenting and psychopathology and children’s ADHD symptoms and aggression: utilizing the advantages of a prospective adoption design

    Get PDF
    Although genetic factors may contribute to initial liability for ADHD onset, there is growing evidence of the potential importance of the rearing environment on the developmental course of ADHD symptomatology. However, associations between family-level variables (maternal hostility, maternal depressive symptoms) and child behaviors (developmental course of ADHD and aggression) may be explained by genes that are shared by biologically related parents and children. Furthermore, ADHD symptoms and aggression commonly co-occur: it is important to consider both simultaneously to have a better understanding of processes underlying the developmental course of ADHD and aggression. To addresses these issues, we employed a longitudinal genetically sensitive parent–offspring adoption design. Analyses were conducted using Cohort I (n = 340) of the Early Growth and Development Study with cross-validation analyses conducted with Cohort II (n = 178). Adoptive mother hostility, but not depression, was associated with later child ADHD symptoms and aggression. Mothers and their adopted children were genetically unrelated, removing passive rGE as a possible explanation. Early child impulsivity/activation was associated with later ADHD symptoms and aggression. Child impulsivity/activation was also associated with maternal hostility, with some evidence for evocative gene-environment correlation processes on adoptive mother depressive symptoms. This study provides novel insights into family-based environmental influences on child ADHD and aggression symptoms, independent of shared parental genetic factors, implications of which are further explicated in the discussion

    Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    Get PDF
    Peer reviewe
    corecore