1,662 research outputs found
Three-Dimensional Multi-Relaxation Time (MRT) Lattice-Boltzmann Models for Multiphase Flow
In this paper, three-dimensional (3D) multi-relaxation time (MRT)
lattice-Boltzmann (LB) models for multiphase flow are presented. In contrast to
the Bhatnagar-Gross-Krook (BGK) model, a widely employed kinetic model, in MRT
models the rates of relaxation processes owing to collisions of particle
populations may be independently adjusted. As a result, the MRT models offer a
significant improvement in numerical stability of the LB method for simulating
fluids with lower viscosities. We show through the Chapman-Enskog multiscale
analysis that the continuum limit behavior of 3D MRT LB models corresponds to
that of the macroscopic dynamical equations for multiphase flow. We extend the
3D MRT LB models developed to represent multiphase flow with reduced
compressibility effects. The multiphase models are evaluated by verifying the
Laplace-Young relation for static drops and the frequency of oscillations of
drops. The results show satisfactory agreement with available data and
significant gains in numerical stability.Comment: Accepted for publication in the Journal of Computational Physic
Steady State Convergence Acceleration of the Generalized Lattice Boltzmann Equation with Forcing Term through Preconditioning
Several applications exist in which lattice Boltzmann methods (LBM) are used
to compute stationary states of fluid motions, particularly those driven or
modulated by external forces. Standard LBM, being explicit time-marching in
nature, requires a long time to attain steady state convergence, particularly
at low Mach numbers due to the disparity in characteristic speeds of
propagation of different quantities. In this paper, we present a preconditioned
generalized lattice Boltzmann equation (GLBE) with forcing term to accelerate
steady state convergence to flows driven by external forces. The use of
multiple relaxation times in the GLBE allows enhancement of the numerical
stability. Particular focus is given in preconditioning external forces, which
can be spatially and temporally dependent. In particular, correct forms of
moment-projections of source/forcing terms are derived such that they recover
preconditioned Navier-Stokes equations with non-uniform external forces. As an
illustration, we solve an extended system with a preconditioned lattice kinetic
equation for magnetic induction field at low magnetic Prandtl numbers, which
imposes Lorentz forces on the flow of conducting fluids. Computational studies,
particularly in three-dimensions, for canonical problems show that the number
of time steps needed to reach steady state is reduced by orders of magnitude
with preconditioning. In addition, the preconditioning approach resulted in
significantly improved stability characteristics when compared with the
corresponding single relaxation time formulation.Comment: 47 pages, 21 figures, for publication in Journal of Computational
Physic
Mathematical models of magnetospheric convection and its coupling to the ionosphere
Mathematical models of magnetospheric convection and its coupling to ionospher
Lattice Boltzmann simulations of segregating binary fluid mixtures in shear flow
We apply lattice Boltzmann method to study the phase separation of a
two-dimensional binary fluid mixture in shear flow. The algorithm can simulate
systems described by the Navier-Stokes and convection-diffusion equations. We
propose a new scheme for imposing the shear flow which has the advantage of
preserving mass and momentum conservation on the boundary walls without
introducing slip velocities. Our main results concern the presence of two
typical lenght scales in the phase separation process, corresponding to domains
with two different thicknesses. Our simulations at low viscosity confirm
previous results only valid in the limit of infinite viscosity.Comment: 32 pages, 7 figure
Interfacial Micro-currents in Continuum-Scale Multi-Component Lattice Boltzmann Equation Hydrodynamics.
We describe, analyse and reduce micro-current effects in one
class of lattice Boltzmann equation simulation method describing im-miscible fluids within the continuum approximation, due to Lishchuk et al. (Phys. Rev. E 67 036701 (2003)). This model's micro-current flow �field and associated density adjustment, when considered in the
linear, low-Reynolds number regime, may be decomposed into independent, superposable contributions arising from various error terms in its immersed boundary force. Error force contributions which are rotational (solenoidal) are mainly responsible for the micro-current (corresponding density adjustment). Rotationally anisotropic error
terms arise from numerical derivatives and from the sampling of the interface-supporting force. They may be removed, either by eliminating the causal error force or by negating it. It is found to be straightforward to design more effective stencils with significantly improved performance.
Practically, the micro-current activity arising in Lishchuk's method is reduced by approximately three quarters by using an appropriate stencil and approximately by an order of magnitude when the effects of sampling are removed
Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids
We use a modified Shan-Chen, noiseless lattice-BGK model for binary
immiscible, incompressible, athermal fluids in three dimensions to simulate the
coarsening of domains following a deep quench below the spinodal point from a
symmetric and homogeneous mixture into a two-phase configuration. We find the
average domain size growing with time as , where increases
in the range , consistent with a crossover between
diffusive and hydrodynamic viscous, , behaviour. We find
good collapse onto a single scaling function, yet the domain growth exponents
differ from others' works' for similar values of the unique characteristic
length and time that can be constructed out of the fluid's parameters. This
rebuts claims of universality for the dynamical scaling hypothesis. At early
times, we also find a crossover from to in the scaled structure
function, which disappears when the dynamical scaling reasonably improves at
later times. This excludes noise as the cause for a behaviour, as
proposed by others. We also observe exponential temporal growth of the
structure function during the initial stages of the dynamics and for
wavenumbers less than a threshold value.Comment: 45 pages, 18 figures. Accepted for publication in Physical Review
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways
OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels.
RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.
RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c.
CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c
Müller glia provide essential tensile strength to the developing retina.
This is the final version of the article. It first appeared from the Rockefeller University Press via http://dx.doi.org/10.1083/jcb.201503115To investigate the cellular basis of tissue integrity in a vertebrate central nervous system (CNS) tissue, we eliminated Müller glial cells (MG) from the zebrafish retina. For well over a century, glial cells have been ascribed a mechanical role in the support of neural tissues, yet this idea has not been specifically tested in vivo. We report here that retinas devoid of MG rip apart, a defect known as retinoschisis. Using atomic force microscopy, we show that retinas without MG have decreased resistance to tensile stress and are softer than controls. Laser ablation of MG processes showed that these cells are under tension in the tissue. Thus, we propose that MG act like springs that hold the neural retina together, finally confirming an active mechanical role of glial cells in the CNS.This work was funded by a Herchel Smith Postdoctoral Fellowship to R.B.M., the Wellcome Trust programme in Developmental Biology to O.R. and J.O., NIH grants EY14358 (R.O.W.) and EY01730 (Vision Core), MRC Career Development Award and HFSP Young Investigator Grant to K.F., and a Wellcome Trust Investigator Award to W.A.H
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …
