39 research outputs found

    Tropical Cyclones and Storm Surge Modelling Activities

    Get PDF
    The Global Disasters Alert and Coordination System (GDACS) automatically invokes ad hoc numerical models to analyse the level of the hazard of natural disasters like earthquakes, tsunamis, tropical cyclones, floods and volcanoes. The Tropical Cyclones (TCs) are among the most damaging events, due to strong winds, heavy rains and storm surge. In order to estimate the area and the population affected, all three types of the above physical impacts must be taken into account. GDACS includes all these dangerous effects, using various sources of data. The JRC set up an automatic routine that includes the TC information provided by the Joint Typhoon Warning Center (JTWC) and the National Oceanic and Atmospheric Administration (NOAA) into a single database, covering all TCs basins. This information is used in GDACS for the wind impact and as input for the JRC storm surge system. Recently the global numerical models and other TC models have notably improved their resolutions, therefore one of the first aim of this work is the assessment and implementation of new data sources for the wind, storm surge and rainfall impacts in GDACS. Moreover the TC modelling workflow has been revised in order to provide redundancy, transparency and efficiency while addressing issues of accuracy and incorporation of additional physical processes. The status of development is presented along with the outline of future steps.JRC.E.1-Disaster Risk Managemen

    Database on coastal vulnerability and exposure

    Get PDF
    In this document, we report progress on the development of European layers on exposure and vulnerability. This involves the collection and cataloguing of relevant exposure factors (e.g., land use, population, settlements, infrastructures) and vulnerability indicators (coastal flood protection, damage functions) as well as the development and application of tools for the logging, spatial interpolation, statistical analysis and validation of the collected information. All data are available through the The Risk Data hub database the aim of which is to improve the accessibility and dissemination of EU-wide curated risk data for fostering Disaster Risk Management (DRM).JRC.E.1-Disaster Risk Managemen

    Steady State Convergence Acceleration of the Generalized Lattice Boltzmann Equation with Forcing Term through Preconditioning

    Full text link
    Several applications exist in which lattice Boltzmann methods (LBM) are used to compute stationary states of fluid motions, particularly those driven or modulated by external forces. Standard LBM, being explicit time-marching in nature, requires a long time to attain steady state convergence, particularly at low Mach numbers due to the disparity in characteristic speeds of propagation of different quantities. In this paper, we present a preconditioned generalized lattice Boltzmann equation (GLBE) with forcing term to accelerate steady state convergence to flows driven by external forces. The use of multiple relaxation times in the GLBE allows enhancement of the numerical stability. Particular focus is given in preconditioning external forces, which can be spatially and temporally dependent. In particular, correct forms of moment-projections of source/forcing terms are derived such that they recover preconditioned Navier-Stokes equations with non-uniform external forces. As an illustration, we solve an extended system with a preconditioned lattice kinetic equation for magnetic induction field at low magnetic Prandtl numbers, which imposes Lorentz forces on the flow of conducting fluids. Computational studies, particularly in three-dimensions, for canonical problems show that the number of time steps needed to reach steady state is reduced by orders of magnitude with preconditioning. In addition, the preconditioning approach resulted in significantly improved stability characteristics when compared with the corresponding single relaxation time formulation.Comment: 47 pages, 21 figures, for publication in Journal of Computational Physic

    Nonlinear interfacial waves in a constant-vorticity planar flow over variable depth

    Full text link
    Exact Lagrangian in compact form is derived for planar internal waves in a two-fluid system with a relatively small density jump (the Boussinesq limit taking place in real oceanic conditions), in the presence of a background shear current of constant vorticity, and over arbitrary bottom profile. Long-wave asymptotic approximations of higher orders are derived from the exact Hamiltonian functional in a remarkably simple way, for two different parametrizations of the interface shape.Comment: revtex, 4.5 pages, minor corrections, summary added, accepted to JETP Letter

    BOUT++ : Recent and current developments

    Get PDF
    BOUT++ is a 3D nonlinear finite-difference plasma simulation code, capable of solving quite general systems of PDEs, but targeted particularly on studies of the edge region of tokamak plasmas. BOUT++ is publicly available, and has been adopted by a growing number of researchers worldwide. Here we present improvements which have been made to the code since its original release, both in terms of structure and its capabilities. Some recent applications of these methods are reviewed, and areas of active development are discussed. We also present algorithms and tools which have been developed to enable creation of inputs from analytic expressions and experimental data, and for processing and visualisation of output results. This includes a new tool Hypnotoad for the creation of meshes from experimental equilibria. Algorithms have been implemented in BOUT++ to solve a range of linear algebraic problems encountered in the simulation of reduced MHD and gyro-fluid models: A preconditioning scheme is presented which enables the plasma potential to be calculated efficiently using iterative methods supplied by the PETSc library, without invoking the Boussinesq approximation. Scaling studies are also performed of a linear solver used as part of physics-based preconditioning to accelerate the convergence of implicit time-integration schemes

    Lattice kinetic simulations of 3-D MHD turbulence

    No full text
    A recently proposed lattice Boltzmann kinetic scheme offers a promising tool for simulating complex 3-D MHD flows. The algorithm is based on the BGK modeling of the collision term. The conventional approach for implementing magnetic behavior in LBM methods is based on one tensor-valued distribution function to present both the fluids variables (density and momentum) and the magnetic field. This formulation, however, has been proven a rather inefficient approach. The present scheme calls for a separate BGK-like evolution equation for the magnetic field which models the induction equation and enhances simplicity while allowing for the independent adjustment of the magnetic resistivity. Furthermore the algorithm correctly recovers the macroscopic dissipative MHD equations. Numerical results for the 3-D Taylor-Green vortex problem are presented with corresponding results computed with a pseudo-spectral code used as benchmark. (C) 2005 Elsevier Ltd. All rights reserved

    Lattice kinetic simulations in three-dimensional magnetohydrodynamics

    No full text
    A lattice kinetic algorithm to simulate three-dimensional (3D) incompressible magnetohydrodynamics is presented. The fluid is monitored by a distribution function, which obeys a scalar kinetic equation, subject to an external force due to the imposed magnetic field. Following the work of Dellar [J. Comput. Phys. 179, 95 (2002)] , the magnetic field is represented by a different three-component vector distribution function, which obeys a corresponding vector kinetic equation. Discretization of the 3D phase space is based on a 19-bit scheme for the hydrodynamic part and on a 7-bit scheme for the magnetic part. Numerical results for magnetohydrodynamic (MHD) flow in a rectangular duct with insulating and conducting walls provide excellent agreement with corresponding analytical solutions. The scheme maintains in all cases tested the MHD constraint del.B=0 within machine round-off error

    Lattice kinetic schemes in toroidal geometry

    No full text
    Lattice kinetic schemes has been consistently developed for the last 15 years as a tool to tackle complicated problems from a mesoscopic perspective. The system is described by a velocity distribution function, which follows a BGK kinetic type equation and is evolved under specific constrains in order to ensure a desired macroscopic behavior. This mesoscale scheme has been recently extended to MHD configurations with noticeable success. In the present work the in-house 3D MHDlattice kinetic code is properly modified to simulate dissipative flows in a toroidal geometry. The evolution of the MHD field is followed in time via the aforementioned lattice kinetic solver and numerical results are reported for space dependent and overall quantities

    Lattice kinetic schemes in fusion plasmas

    No full text
    Lattice Boltzmann Methods (LBM) are an established alternative approach for numerical simulations of a large spectrum of physical processes. They are based on a mesoscopic analysis of the underlying physics through a velocity distribution function f(x,ξ,t) which obeys the Boltzmann Equation (BE). Furthermore, it has been argued that a number of macroscopic processes can be modeled through a mesoscopic evolution equation similar to BE appropriately tuned to recover the desired macroscopic behavior while retaining the multi-scale characteristics of LBM. Such an approach can be utilized to analyze a magnetohydrodynamic (MHD) system via lattice kinetic schemes [1,2]. All macroscopic quantities are given as moments of f and the algorithm is seen to solve consistently the hydrodynamic and magnetic induction dissipative equations in generalized 3D geometry [3]. We examine the potential of such an algorithm for large-scale fusion simulations. Initial conditions may be provided by the Integrated Tokamak Modelling (ITM) mdsplus server in ENEA frascati, Rome, for ITER related scenarios [4]. The case considered is the evolution of continuous shear Alfvén waves in a plasma [5]

    Rarefied gas flow in concentric annular tube: Estimation of the Poiseuille number and the exact hydraulic diameter

    No full text
    The fully developed flow of rarefied gases through circular ducts of concentric annular cross sections is solved via kinetic theory. The flow is due to an externally imposed pressure gradient in the longitudinal direction and it is simulated by the BGK kinetic equation, subject to Maxwell diffuse-specular boundary conditions. The approximate principal of the hydraulic diameter is investigated for first time in the field of rarefied gas dynamics. For the specific flow pattern, in addition to the flow rates, results are reported for the Poiseuille number and the exact hydraulic diameter. The corresponding parameters include the whole range of the Knudsen number and various values of the accommodation coefficient and the ratio of the inner over the outer radius. The accuracy of the results is validated in several ways, including the recovery of the analytical solutions at the hydrodynamic and free molecular limits. (C) 2007 Elsevier Masson SAS. All rights reserved
    corecore