Abstract

In this paper, three-dimensional (3D) multi-relaxation time (MRT) lattice-Boltzmann (LB) models for multiphase flow are presented. In contrast to the Bhatnagar-Gross-Krook (BGK) model, a widely employed kinetic model, in MRT models the rates of relaxation processes owing to collisions of particle populations may be independently adjusted. As a result, the MRT models offer a significant improvement in numerical stability of the LB method for simulating fluids with lower viscosities. We show through the Chapman-Enskog multiscale analysis that the continuum limit behavior of 3D MRT LB models corresponds to that of the macroscopic dynamical equations for multiphase flow. We extend the 3D MRT LB models developed to represent multiphase flow with reduced compressibility effects. The multiphase models are evaluated by verifying the Laplace-Young relation for static drops and the frequency of oscillations of drops. The results show satisfactory agreement with available data and significant gains in numerical stability.Comment: Accepted for publication in the Journal of Computational Physic

    Similar works