279 research outputs found

    THE EFFECTS OF QUORUM SENSING ANTAGONISTS ON BIOFILM

    Get PDF
    poster abstractCystic fibrosis (CF) is a recessive genetic disorder that causes the for-mation of thick mucus plugs in the lungs of approximately 30,000 people in the United States and 60,000 individuals world-wide. Pseudomonas aeruginosa, an opportunistic bacterial pathogen, is able to colonize the mu-cus plugs and form antibiotic resistant biofilms. These microbial colonies, known as biofilms, cause serious problems for individuals living with CF. P. aeruginosa biofilms are able to cause chronic infections in the lungs of CF patients leading to increased morbidity and mortality. Using a modified bio-film assay, we tested the effects of modified chemical compounds and amino acids on P. aeruginosa biofilm dispersion. A previous study performed on P. aeruginosa, found that treatment of d- and l- amino acids resulted in biofilm dissemination. Through additional experiments, we will identify modified chemical compounds that induce biofilm dispersion. This research will in-crease our knowledge of P. aeruginosa biofilm dispersion, and allow us to explore new forms of treatment and therapy for CF patients with chronic in-fections that could be life threatening

    Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections.

    Get PDF
    Arenaviruses are one of the largest families of human hemorrhagic fever viruses and are known to infect both mammals and snakes. Arenaviruses package a large (L) and small (S) genome segment in their virions. For segmented RNA viruses like these, novel genotypes can be generated through mutation, recombination, and reassortment. Although it is believed that an ancient recombination event led to the emergence of a new lineage of mammalian arenaviruses, neither recombination nor reassortment has been definitively documented in natural arenavirus infections. Here, we used metagenomic sequencing to survey the viral diversity present in captive arenavirus-infected snakes. From 48 infected animals, we determined the complete or near complete sequence of 210 genome segments that grouped into 23 L and 11 S genotypes. The majority of snakes were multiply infected, with up to 4 distinct S and 11 distinct L segment genotypes in individual animals. This S/L imbalance was typical: in all cases intrahost L segment genotypes outnumbered S genotypes, and a particular S segment genotype dominated in individual animals and at a population level. We corroborated sequencing results by qRT-PCR and virus isolation, and isolates replicated as ensembles in culture. Numerous instances of recombination and reassortment were detected, including recombinant segments with unusual organizations featuring 2 intergenic regions and superfluous content, which were capable of stable replication and transmission despite their atypical structures. Overall, this represents intrahost diversity of an extent and form that goes well beyond what has been observed for arenaviruses or for viruses in general. This diversity can be plausibly attributed to the captive intermingling of sub-clinically infected wild-caught snakes. Thus, beyond providing a unique opportunity to study arenavirus evolution and adaptation, these findings allow the investigation of unintended anthropogenic impacts on viral ecology, diversity, and disease potential

    Early-type galaxies in the SDSS. III. The Fundamental Plane

    Get PDF
    A magnitude limited sample of nearly 9000 early-type galaxies, in the redshift range 0.01 < z < 0.3, was selected from the Sloan Digital Sky Survey using morphological and spectral criteria. The Fundamental Plane relation in this sample is R_o ~ sigma^{1.49\pm 0.05} I_o^{-0.75\pm 0.01} in the r* band. It is approximately the same in the g*, i* and z* bands. Relative to the population at the median redshift in the sample, galaxies at lower and higher redshifts have evolved only little. If the Fundamental Plane is used to quantify this evolution then the apparent magnitude limit can masquerade as evolution; once this selection effect has been accounted for, the evolution is consistent with that of a passively evolving population which formed the bulk of its stars about 9 Gyrs ago. One of the principal advangtages of the SDSS sample over previous samples is that the galaxies in it lie in environments ranging from isolation in the field to the dense cores of clusters. The Fundamental Plane shows that galaxies in dense regions are slightly different from galaxies in less dense regions.Comment: 27 pages, 10 figures. Accepted by AJ (scheduled for April 2003). This paper is part III of a revised version of astro-ph/011034

    Modified Gravity and Cosmology

    Get PDF
    In this review we present a thoroughly comprehensive survey of recent work on modified theories of gravity and their cosmological consequences. Amongst other things, we cover General Relativity, Scalar-Tensor, Einstein-Aether, and Bimetric theories, as well as TeVeS, f(R), general higher-order theories, Horava-Lifschitz gravity, Galileons, Ghost Condensates, and models of extra dimensions including Kaluza-Klein, Randall-Sundrum, DGP, and higher co-dimension braneworlds. We also review attempts to construct a Parameterised Post-Friedmannian formalism, that can be used to constrain deviations from General Relativity in cosmology, and that is suitable for comparison with data on the largest scales. These subjects have been intensively studied over the past decade, largely motivated by rapid progress in the field of observational cosmology that now allows, for the first time, precision tests of fundamental physics on the scale of the observable Universe. The purpose of this review is to provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a self-contained, comprehensive and up-to-date introduction to the subject as a whole.Comment: 312 pages, 15 figure

    OpenET : filling a critical data gap in water management for the western United States.

    Get PDF
    The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of water by irrigated agriculture is one of the most important data gaps for water managers in the western United States (U.S.) and other arid agricultural regions globally. The ability to easily access information on ET is central to improving water budgets across the West, advancing the use of data-driven irrigation management strategies, and expanding incentive-driven conservation programs. Recent advances in remote sensing of ET have led to the development of multiple approaches for field-scale ET mapping that have been used for local and regional water resource management applications by U.S. state and federal agencies. The OpenET project is a community-driven effort that is building upon these advances to develop an operational system for generating and distributing ET data at a field scale using an ensemble of six well-established satellite-based approaches for mapping ET. Key objectives of OpenET include: Increasing access to remotely sensed ET data through a web-based data explorer and data services; supporting the use of ET data for a range of water resource management applications; and development of use cases and training resources for agricultural producers and water resource managers. Here we describe the OpenET framework, including the models used in the ensemble, the satellite, meteorological, and ancillary data inputs to the system, and the OpenET data visualization and access tools. We also summarize an extensive intercomparison and accuracy assessment conducted using ground measurements of ET from 139 flux tower sites instrumented with open path eddy covariance systems. Results calculated for 24 cropland sites from Phase I of the intercomparison and accuracy assessment demonstrate strong agreement between the satellite-driven ET models and the flux tower ET data. For the six models that have been evaluated to date (ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, and SSEBop) and the ensemble mean, the weighted average mean absolute error (MAE) values across all sites range from 13.6 to 21.6 mm/month at a monthly timestep, and 0.74 to 1.07 mm/day at a daily timestep. At seasonal time scales, for all but one of the models the weighted mean total ET is within ±8% of both the ensemble mean and the weighted mean total ET calculated from the flux tower data. Overall, the ensemble mean performs as well as any individual model across nearly all accuracy statistics for croplands, though some individual models may perform better for specific sites and regions. We conclude with three brief use cases to illustrate current applications and benefits of increased access to ET data, and discuss key lessons learned from the development of OpenET

    Dengue Deaths in Puerto Rico: Lessons Learned from the 2007 Epidemic

    Get PDF
    Dengue is a major public health problem in the tropics and subtropics; an estimated 50 million cases occur annually and 40 percent of the world's population lives in areas with dengue virus (DENV) transmission. Dengue has a wide range of clinical presentations from an undifferentiated acute febrile illness, classic dengue fever, to severe dengue (i.e., dengue hemorrhagic fever or dengue shock syndrome). About 5% of patients develop severe dengue, which is more common with second or subsequent infections. No vaccines are available to prevent dengue, and there are no specific antiviral treatments for patients with dengue. However, early recognition of shock and intensive supportive therapy can reduce risk of death from ∼10% to less than 1% among severe dengue cases. Reviewing dengue deaths is one means to identify issues in clinical management. These findings can be used to develop healthcare provider education to minimize dengue morbidity and mortality

    Influence of Socioeconomic Status Trajectories on Innate Immune Responsiveness in Children

    Get PDF
    Lower socioeconomic status (SES) is consistently associated with poor health, yet little is known about the biological mechanisms underlying this inequality. In children, we examined the impact of early-life SES trajectories on the intensity of global innate immune activation, recognizing that excessive activation can be a precursor to inflammation and chronic disease.Stimulated interleukin-6 production, a measure of immune responsiveness, was analyzed ex vivo for 267 Canadian schoolchildren from a 1995 birth cohort in Manitoba, Canada. Childhood SES trajectories were determined from parent-reported housing data using a longitudinal latent-class modeling technique. Multivariate regression was conducted with adjustment for potential confounders.SES was inversely associated with innate immune responsiveness (p=0.003), with persistently low-SES children exhibiting responses more than twice as intense as their high-SES counterparts. Despite initially lower SES, responses from children experiencing increasing SES trajectories throughout childhood were indistinguishable from high-SES children. Low-SES effects were strongest among overweight children (p<0.01). Independent of SES trajectories, immune responsiveness was increased in First Nations children (p<0.05) and urban children with atopic asthma (p<0.01).These results implicate differential immune activation in the association between SES and clinical outcomes, and broadly imply that SES interventions during childhood could limit or reverse the damaging biological effects of exposure to poverty during the preschool years

    Tight Regulation of the intS Gene of the KplE1 Prophage: A New Paradigm for Integrase Gene Regulation

    Get PDF
    Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host's chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF). We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excisive recombination are discussed
    • …
    corecore