140 research outputs found

    Il10 Deficiency Rebalances Innate Immunity to Mitigate Alzheimer-Like Pathology

    Get PDF
    SummaryThe impact of inflammation suppressor pathways on Alzheimer’s disease (AD) evolution remains poorly understood. Human genetic evidence suggests involvement of the cardinal anti-inflammatory cytokine, interleukin-10 (IL10). We crossed the APP/PS1 mouse model of cerebral amyloidosis with a mouse deficient in Il10 (APP/PS1+Il10−/−). Quantitative in silico 3D modeling revealed activated Aβ phagocytic microglia in APP/PS1+Il10−/− mice that restricted cerebral amyloidosis. Genome-wide RNA sequencing of APP/PS1+Il10−/− brains showed selective modulation of innate immune genes that drive neuroinflammation. Il10 deficiency preserved synaptic integrity and mitigated cognitive disturbance in APP/PS1 mice. In vitro knockdown of microglial Il10-Stat3 signaling endorsed Aβ phagocytosis, while exogenous IL-10 had the converse effect. Il10 deficiency also partially overcame inhibition of microglial Aβ uptake by human Apolipoprotein E. Finally, the IL-10 signaling pathway was abnormally elevated in AD patient brains. Our results suggest that “rebalancing” innate immunity by blocking the IL-10 anti-inflammatory response may be therapeutically relevant for AD

    Interferon-ß regulates the production of IL-10 by toll-like receptor-activated microglia

    Get PDF
    Pattern recognition receptors, such as toll-like receptors (TLRs), perceive tissue alterations and initiate local innate immune responses. Microglia, the resident macrophages of the brain, encode TLRs which primary role is to protect the tissue integrity. However, deregulated activation of TLRs in microglia may lead to chronic neurodegeneration. This double role of microglial responses is often reported in immune-driven neurologic diseases, as in multiple sclerosis (MS). Consequently, strategies to manipulate microglia inflammatory responses may help to ameliorate disease progression. In this context, the anti-inflammatory cytokine interleukin (IL)-10 appears as an attractive target. In this study, we investigated how activation of microglia by TLRs with distinct roles in MS impacts on IL-10 production. We found that activation of TLR2, TLR4, and TLR9 induced the production of IL-10 to a greater extent than activation of TLR3. This was surprising as both TLR3 and IL-10 play protective roles in animal models of MS. Interestingly, combination of TLR3 triggering with the other TLRs, enhanced IL-10 through the modulation of its transcription, via interferon (IFN)-beta, but independently of IL-27. Thus, in addition to the modulation of inflammatory responses of the periphery described for the axis TLR3/IFN-beta, we now report a direct modulation of microglial responses. We further show that the presence of IFN-gamma in the microenvironment abrogated the modulation of IL-10 by TLR3, whereas that of IL-17 had no effect. Considering the therapeutic application of IFN-beta in MS, our study bears important implications for the understanding of the cytokine network regulating microglia responses in this setting.Portuguese Foundation for Science and Technology (FCT), Grant/Award Numbers: SFRH/BD/88081/2012 and SFRH/BPD/72710/2010; FEDER - Competitiveness Factors Operational Programme (COMPETE), Grant/Award Numbers: POCI-01-0145-FEDER-007038 and NORTE-01-0145-FEDER-000013; Norte Portugal Regional Operational Programme, PORTUGAL 2020, European Regional Development Fund (ERDF), Grant/Award Number: NORTE 2020; FCT-ANR, Grant/Award Number: FCT-ANR/BIM-MEC/0007/2013; FEDER - Fundo Europeu de Desenvolvimento Regional; COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020; Institute for Research and Innovation in Health Sciences, Grant/Award Number: POCI-01-0145-FEDER-007274info:eu-repo/semantics/publishedVersio

    The PrPC Cl fragment derived from the ovine A(136)R(154)R(171) PRNP allele is highly abundant in sheep brain and inhibits fibrillisation of full-length PrPC protein in vitro

    Get PDF
    AbstractExpression of the cellular prion protein (PrPC) is crucial for the development of prion diseases. Resistance to prion diseases can result from reduced availability of the prion protein or from amino acid changes in the prion protein sequence. We propose here that increased production of a natural PrP α-cleavage fragment, C1, is also associated with resistance to disease. We show, in brain tissue, that ARR homozygous sheep, associated with resistance to disease, produced PrPC comprised of 25% more C1 fragment than PrPC from the disease-susceptible ARQ homozygous and highly susceptible VRQ homozygous animals. Only the C1 fragment derived from the ARR allele inhibits in-vitro fibrillisation of other allelic PrPC variants. We propose that the increased α-cleavage of ovine ARR PrPC contributes to a dominant negative effect of this polymorphism on disease susceptibility. Furthermore, the significant reduction in PrPC β-cleavage product C2 in sheep of the ARR/ARR genotype compared to ARQ/ARQ and VRQ/VRQ genotypes, may add to the complexity of genetic determinants of prion disease susceptibility

    The N-Terminal, Polybasic Region Is Critical for Prion Protein Neuroprotective Activity

    Get PDF
    Several lines of evidence suggest that the normal form of the prion protein, PrPC, exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrPC to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32–134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23–31, Δ23–111, and Δ23–134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23–31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrPC neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases

    Balancing the immune response in the brain: IL-10 and its regulation

    Get PDF
    Background: The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology. Main body: The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders. Conclusion: The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.We acknowledge the Portuguese Foundation for Science and Technology (FCT) for providing a PhD grant to DLS (SFRH/BD/88081/2012) and a post-doctoral fellowship to SR (SFRH/BPD/72710/2010). DS, AGC and SR were funded by FEDER through the Competitiveness Factors Operational Programme (COMPETE) and National Funds through FCT under the scope of the project POCI-01-0145-FEDER007038; and by the project NORTE-01-0145-FEDER-000013, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The MS lab was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT in the framework of the project “Institute for Research and Innovation in Health Sciences ” (POCI-01-0145-FEDER-007274). MS is a FCT Associate Investigator. The funding body had no role in the design of the study and collection, analysis, and interpretation of the data and in writing the manuscript

    The cellular Prion Protein: a player in immunological quiescence

    Get PDF
    Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrPC) remains elusive. Here, we present a novel concept suggesting that PrPC contributes to immunological quiescence in addition to cell protection. PrPC is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrPC serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here we review studies of PrPC physiology in view of this concept

    The TRPM2 channel nexus from oxidative damage to Alzheimer’s pathologies: An emerging novel intervention target for age-related dementia

    Get PDF
    Alzheimer’s disease (AD), an age-related neurodegenerative condition, is the most common cause of dementia among the elder people, but currently there is no treatment. A number of putative pathogenic events, particularly amyloid β peptide (Aβ) accumulation, are believed to be early triggers that initiate AD. However, thus far targeting Aβ generation/aggregation as the mainstay strategy of drug development has not led to effective AD-modifying therapeutics. Oxidative damage is a conspicuous feature of AD, but this remains poorly defined phenomenon and mechanistically ill understood. The TRPM2 channel has emerged as a potentially ubiquitous molecular mechanism mediating oxidative damage and thus plays a vital role in the pathogenesis and progression of diverse neurodegenerative diseases. This article will review the emerging evidence from recent studies and propose a novel ‘hypothesis’ that multiple TRPM2-mediated cellular and molecular mechanisms cascade Aβ and/or oxidative damage to AD pathologies. The ‘hypothesis’ based on these new findings discusses the prospect of considering the TRPM2 channel as a novel therapeutic target for intervening AD and age-related dementia

    Investigating the cell biological mechanisms regulated by the cellular prion protein

    Get PDF
    Transmissible spongiform encephalopathies (TSEs) are rare, uniformly fatal neurodegenerative disorders that can affect many mammalian species, including humans. A hallmark of these diseases is the conversion of cellular prion protein (PrPC) into an abnormally folded form. This misfolded PrPC is infectious, since it can provide a template for pathogenic conversion of PrPC in a new host. In addition to any toxicity of the misfolded protein, loss of normal PrPC function could be involved in the neurodegenerative processes. However, the physiological role of PrPC is still poorly understood and this project has aimed to address that lack of knowledge. Out of the many putative functions ascribed to PrPC, the most commonly proposed is that it protects cells from stress. In contrast, I have found that stable transfection of the prion protein gene into SH-SY5Y neuroblastoma cells increases cell death in response to serum removal from the culture medium. Following treatment with several chemical toxins, two out of four stably transfected clones did, generally, display greater viability than untransfected cells that do not express detectable levels of PrPC. However, knockdown of PrPC expression by RNA interference had no effect on this stress resistance, indicating that it may not have been mediated directly by PrPC. Given the lack of robust stress protection afforded by PrPC transfection, proteomic analyses of the cells were carried out to identify alternative processes that were perturbed as a result of PrPC expression. The results obtained suggested roles for PrPC in cytoskeletal organisation and cell cycle regulation. Various proteins involved in cytoskeletal organisation were confirmed by western blotting to be differentially expressed in some or all of the stably transfected clones. Additionally, the expression changes to proteins involved in cell cycle regulation resulted in slower proliferation of the clones compared with untransfected cells, a difference that was reduced following RNA interference-mediated knockdown of PrPC. Taken together, these data suggested that specific growth factor-activated pathways were differentially regulated in the stably transfected clones. One candidate pathway was nerve growth factor (NGF) signalling, which promotes neuronal survival and differentiation as well as regulating various processes outside of the nervous system. PrPC-transfection resulted in altered expression of receptors for NGF, suggesting that the stably transfected clones were, indeed, responding differently to NGF stimulation. However, the molecular mechanism responsible for these expression changes remains to be determined, since co-immunoprecipitation experiments did not identify any physical interactions between PrPC and the NGF receptors. Nonetheless, a role for PrPC in modulating NGF signalling has the potential to explain many of the diverse phenotypic observations in PrPC-null mice and might indicate that loss of PrPC function is an important part of TSE pathogenesis
    corecore