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Abstract
Pattern recognition receptors, such as toll-like receptors (TLRs), perceive tissue alterations and initiate

local innate immune responses. Microglia, the resident macrophages of the brain, encode TLRs which

primary role is to protect the tissue integrity. However, deregulated activation of TLRs in microglia

may lead to chronic neurodegeneration. This double role of microglial responses is often reported in

immune-driven neurologic diseases, as in multiple sclerosis (MS). Consequently, strategies to manipu-

late microglia inflammatory responses may help to ameliorate disease progression. In this context, the

anti-inflammatory cytokine interleukin (IL)-10 appears as an attractive target. In this study, we investi-

gated how activation of microglia by TLRs with distinct roles in MS impacts on IL-10 production. We

found that activation of TLR2, TLR4, and TLR9 induced the production of IL-10 to a greater extent

than activation of TLR3. This was surprising as both TLR3 and IL-10 play protective roles in animal

models of MS. Interestingly, combination of TLR3 triggering with the other TLRs, enhanced IL-10

through the modulation of its transcription, via interferon (IFN)-b, but independently of IL-27. Thus, in

addition to the modulation of inflammatory responses of the periphery described for the axis TLR3/

IFN-b, we now report a direct modulation of microglial responses. We further show that the presence

of IFN-g in the microenvironment abrogated the modulation of IL-10 by TLR3, whereas that of IL-17

had no effect. Considering the therapeutic application of IFN-b in MS, our study bears important impli-

cations for the understanding of the cytokine network regulating microglia responses in this setting.
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1 | INTRODUCTION

The contribution of myeloid cells to the central nervous system (CNS)

function is increasingly appreciated, particularly during inflammation

(Gertig & Hanisch, 2014). Neuroinflammation initiated by astroglial cells

plays cardinal roles in the CNS, including protective responses against

infection and restorative responses to CNS injury. However, the same

components that participate in host protective responses are observed

in neuroinflammatory disorders (Sochocka, Diniz, & Leszek, 2016).

Abbreviations: CNS, central nervous system; DAMP, damage-associated

molecular patterns; DMEM, Dulbecco’s modified Eagle medium; EAE,

experimental autoimmune encephalomyelitis; ELISA, enzyme-linked

immunosorbent assay; FBS, fetal bovine serum; GSK-3, glycogen synthase

kinase; HEPES, 4-(2-hydroethyl)-1-piperazineethanesulfonic acid; HPRT,

hypoxanthine-guanine phosphoribosyl transferase; IFN, interferon; IFNAR,

interferon alfa/beta receptor; IL, interleukin; IRF, IFN regulatory factor; LCCM,

L929-cell conditioned medium; LPS, lipopolysaccharide; MS, multiple sclerosis;

MyD88, myeloid differentiation primary response gene 88; P, postnatal; PAMP,

pathogen-associated molecular patterns; PRR, pattern-recognition receptors; rt-

PCR, real-time PCR; Th, T helper cells; TLR, Toll-like receptor; TNF, tumor

necrosis factor; TRIF, TIR-domain-containing adapter-inducing interferon-b.
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Indeed, pathologic neuroinflammation is reported in many CNS dis-

eases, including multiple sclerosis (MS), Alzheimer’s disease, Parkinson’s

disease, stroke, and traumatic brain injury (Czirr & Wyss-Coray, 2012;

Shastri, Bonifati, & Kishore, 2013). The critical balance between neuro-

protection and neurodegeneration is largely dependent on microglia

immune responses (Ransohoff & Brown, 2012).

Microglia, the resident macrophages of the CNS (Hanisch & Ket-

tenmann, 2007), play an important role in patrolling the parenchymal

tissue, contributing to the maintenance of neuronal homeostasis and

the initiation of innate immune responses in the brain (Kettenmann,

Hanisch, Noda, & Verkhratsky, 2011; Perry & Teeling, 2013; Ransohoff

& Brown, 2012). In line with their myeloid origin, microglia express

numerous pattern recognition receptors (PRRs), among which toll-like

receptors (TLRs) (Eggen, Raj, Hanisch, & Boddeke, 2013; Shastri et al.,

2013), involved in the recognition of pathogen- or damage-associated

molecular patterns (PAMPs and DAMPs, respectively). Upregulation

and activation of several TLRs in microglia has been described as a pro-

tective mechanism during infection by viruses, bacteria and parasites

(Sochocka et al., 2016). In the context of neurodegeneration, the initial

activation of microglia (and other glial cells) by DAMPs plays a pivotal

role in repairing injury and maintaining the CNS homeostasis, but with

the increase in neuronal death, this very same activation further poten-

tiates cell death, thus enhancing neurodegeneration (Hanke & Kielian,

2011; Hayward & Lee, 2014; Kigerl, de Rivero Vaccari, Dietrich, Popo-

vich, & Keane, 2014; Shastri et al., 2013; Su, Bai, Zhou, & Zhang,

2016). Consequently, it is conceived that regulating the activation of

microglia, for example, through TLRs, may allow the regulation of sev-

eral neurological diseases (Pedras-Vasconcelos, Puig, & Verthelyi,

2009).

TLR responses are mediated by the intracellular adaptor molecules

myeloid differentiation primary response gene 88 (MyD88) and TIR-

domain-containing adapter-inducing interferon-b (TRIF) (Kawai & Akira,

2010; Pandey, Kawai, & Akira, 2014). Most TLRs signal uniquely via

MyD88, the exceptions being TLR4, which signals via both MyD88 and

TRIF, and TLR3, which signals uniquely through TRIF (Kawai & Akira,

2010). Both MyD88 and TRIF initiate a series of intracellular signaling

cascades that culminate with the production of several immune media-

tors, as cytokines, chemokines, reactive oxygen species, and nitric

oxide (Kawai & Akira, 2010). MyD88-dependent signals efficiently acti-

vate the NF-kB family of transcription factors, leading to the produc-

tion of many cytokines, as tumor necrosis factor (TNF), interleukin (IL)-

6, IL-1b, and also IL-10 (Pandey et al., 2014). TRIF-mediated signals

induce interferon regulatory factor (IRF)-3, leading to the production of

type I interferons (IFNs) and other IFN-responsive factors (Pandey

et al., 2014). Of all these cytokines, two have been associated with pro-

tection during neurodegeneration: type I IFNs and IL-10.

Type I IFNs comprise a family of cytokines with prominent roles

during viral resistance (McNab, Mayer-Barber, Sher, Wack, & O’Garra,

2015). In the context of CNS infections, protective type I IFN

responses are also observed, for example, during intracerebral infection

with lymphatic choriomeningitis virus (Merigan, Oldstone, & Welsh,

1977; Nayak et al., 2013) or with La Cross virus or coronavirus mouse

hepatitis virus, where microglial cells were identified as type I IFN sour-

ces (Kallfass et al., 2012; Roth-Cross, Bender, & Weiss, 2008). A role

for microglial type I IFN signaling was also described during the resolu-

tion of sterile injury (Khorooshi & Owens, 2010). Furthermore, the

induction of type I IFNs is critical for limiting experimental autoimmune

encephalomyelitis (EAE) as mice deficient for type I IFN receptor

(IFNAR) suffer from a higher disease course, increased macrophage, T-

cell and B-cell infiltration, and greater demyelination (Prinz et al., 2008).

Importantly, administration of IFN-b is the first-line drug for the treat-

ment of MS (Inoue & Shinohara, 2013; Marrie & Rudick, 2006). Despite

all these protective effects, chronically increased levels of IFN are

linked to various diseases, including encephalitis or other type I inter-

feronopathies (Goldmann, Blank, & Prinz, 2016).

IL-10 is a powerful anti-inflammatory cytokine produced by most

immune cells that plays the important role of preventing exacerbated

immune responses and subsequent tissue immunopathology (O’Garra

& Vieira, 2007). The production of IL-10 by TLR-activated microglia is

well documented (Butchi, Du, & Peterson, 2010; Jack et al., 2005;

Ledeboer et al., 2002; Mizuno, Sawada, Marunouchi, & Suzumura,

1994; Olson & Miller, 2004). The potential of IL-10 in controlling

inflammatory responses in the brain has gained recent importance

(Kwilasz, Grace, Serbedzija, Maier, & Watkins, 2015). IL-10 has been

tested as a therapeutic approach to a series of neurologic pathologies,

where excessive and persistent neuroinflammation acts as a driver of

neurodegeneration. Examples of this include the administration of IL-

10 in animal models of brain ischemia (Perez-de Puig et al., 2013), Par-

kinson’s disease (Joniec-Maciejak et al., 2014), and MS (Cua, Hutchins,

LaFace, Stohlman, & Coffman, 2001). There are, however situations,

such as in Alzheimer�s disease, where a detrimental role for IL-10 has

been shown (Chakrabarty et al., 2015; Guillot-Sestier et al., 2015). In

either case, modulating IL-10 in the CNS appears as an attractive

approach to rewire otherwise detrimental immune responses. This calls

for a deep understanding on the molecular mechanisms regulating IL-

10 production in the brain, something that remains poorly studied

(Lobo-Silva, Carriche, Castro, Roque, & Saraiva, 2016).

Owing to the potential of IL-10 in restoring the immune balance in

the brain, targeting the molecular mechanisms that regulate IL-10 pro-

duction by brain resident cells is an interesting area that deserves

attention. In this study, we investigated the induction of IL-10 upon

TLR activation in microglia and some of the operating mechanisms that

can enhance it. We also probed how microenvironmental cues further

modulate IL-10.

2 | MATERIALS AND METHODS

2.1 | Ethics statement

All animal experiments were performed in strict accordance with the

recommendations of the European Union Directive 2010/63/EU. Ani-

mals were kept and bred with water and food ad libitum, according

with the Portuguese National Authority for Animal Experimentation

guidelines. Newborn mice were humanely euthanized by decapitation

and every effort was made to minimize suffering.
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2.2 | Mice

Adult wild-type, IL-10-deficient, and type I interferon receptor

(IFNAR)-deficient mice, all in C57BL/6 background, were kept and bred

at ICVS. The IFNAR deficient mice were a kind gift of Dr Anne O’Garra

(Francis Crick Institute, London, UK). Postnatal day 0 (P0)–P3 mice

were used to perform primary microglia cell cultures. Adult mice (8–12

weeks) were used to generate bone marrow-derived macrophages.

2.3 | Media and stimuli

Dulbecco’s modified eagle medium (DMEM), fetal bovine serum (FBS),

HEPES solution, sodium piruvate, L-glutamine, and penicillin–strepto-

mycin were purchased from Invitrogen. Cells were cultured in DMEM

supplemented with 10% FBS, 1% HEPES solution, 1% sodium piruvate,

1% L-glutamine, and 1% penicillin–streptomycin (cDMEM). Pam3CSK4

(TLR2/TLR1 ligand), polyI:C (TLR3 ligand), and CpG (TLR9 ligand) were

obtained from Invivogen. Lipopolysaccharide (LPS) from Escherichia coli

(TLR4 ligand) was bought from Sigma. Mouse recombinant IFN-b, IL-

27, IFN-g, and IL-17 were bought from R&D systems. Neutralizing

IFN-g antibody (clone XMG1.2) was a kind gift of Dr Rui Appelberg

(IBMC, Porto). All media was prepared using endotoxin-free plastics

and all stimuli were suspended in endotoxin-free media or water.

2.4 | Primary microglial cell cultures

Primary microglia cultures were established from P0-P3 C57BL/6 mice

brains. Brains were aseptically removed, washed with cDMEM to

remove blood leftovers, and homogenized using a 40 lm cell strainer.

8.5 3 106 cells were plated in cDMEM onto 75 cm2 flasks and cultured

for 2 weeks in a humidified atmosphere at 378C with 5% CO2. The

media was changed on days 3, 6, 9, and 12. On day 14, flasks were

shaken for 4 h at 240 rpm to detach microglial cells from the mixed cul-

tures. On day 14, around 90% of the collected cells were CD11b1, as

detected by flow cytometry. Cells were collected and 1 3 105 cells

plated in 100 lL of cDMEM per well in 96-well plates for further stim-

ulation. At different times poststimulation, the cells were harvested for

RNA analysis and the supernatants for cytokine detection.

2.5 | Generation of primary bone marrow-derived

macrophages

Bone marrow-derived macrophages were differentiated from bone

marrow precursors cultured in cDMEM, supplemented with 20% L929-

cell conditioned media (LCCM), as previously described (Teixeira-

Coelho et al., 2014). Briefly, total bone marrow cells were cultured in

microbiological Petri dishes (Sterilin) and kept at 378C and 5% CO2.

Cells were fed on day 4 with equal volume of cDMEM containing 20%

LCCM. On day 7, macrophages were harvested, counted and seeded

into 24-well tissue culture plates at 5 3 105 cells in 500 mL per well in

culture medium. Cells were stimulated as indicated below and the cul-

ture supernatants harvested 24 hr later for IL-10 detection.

2.6 | Cell stimulation

Purified microglial cells recovered on day 14 or bone marrow-derived mac-

rophages recovered on day 7 were stimulated for different time points as

appropriate. Unless specified in the figure legends, TLR stimuli were used

at a concentration of 2 mg/mL for Pam3CSK4, 20 ng/mL for polyI:C,

25 ng/mL for LPS, and 1 mM for CpG. Recombinant cytokines were sup-

plemented at the following concentrations: 20 ng/mL for IFN-b; 10 ng/mL

for IL-27; 50–100–250 U/mL for IFN-g; and 10–20–50 ng/mL for IL-17.

2.7 | Cytokine detection

Cytokine production was measured 24 hr poststimulation in the super-

natant of microglial cell cultures by enzyme-linked immunosorbent

assay (ELISA) or by Multiplex, following the manufacturer’s instructions

(eBioscience and Procarta, respectively).

2.8 | RNA extraction, cDNA, and quantitative real-

time PCR (Rt-PCR)

Total RNA from stimulated and nonstimulated cells was extracted and

precipitated using TRIzol 143 Reagent (Invitrogen) and reverse tran-

scribed into cDNA using the manufacturer (Thermo Scientific) instruc-

tions. Il10 and Ifnb gene expression were assessed by rt-PCR using

TaqMan MasterMix (Applied Biosystems) and normalized against hypo-

xanthine phosphoribosyltransferase 1 (Hprt1) expression, as previously

described (Teixeira-Coelho et al., 2014).

2.9 | mRNA stability determination

mRNA stability was determined as described before (Teixeira-Coelho

et al., 2014). Microglia cultures were TLR-stimulated for 1 hr and at

that time-point actinomycin D added to the cultures. After 30, 60, or

90 min, the cells were lysed and the expression of IL-10 was analyzed

by RT-PCR as indicated above.

2.10 | Statistical analysis

Data are expressed as mean6 SD and analyzed by one or two-way

analysis-of-variance (ANOVA) tests or student’s t test, as indicated in

the figure legends. The p values considered as statistically significant

were *p� .05, **p� .01, ***p� .001, and ****p� .0001.

3 | RESULTS

3.1 | TLR stimulation modulates the inflammatory

landscape of microglia

To obtain an overview of the inflammatory landscape of microglia trig-

gered by different TLRs, mouse primary microglia cell cultures were

stimulated with chemical agonists for TLR2 (Pam3CSK4), TLR3 (polyI:

C), TLR4 (LPS), or TLR9 (CpG). These TLRs are representative of two

surface TLRs (TLR2 and 4) mainly associated with the recognition of

bacterial products and two intracellular (TLR3 and 9), mainly activated

by viruses (Kawai & Akira, 2010). Twenty-four hours poststimulation
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with the aforementioned TLR agonists, the culture supernatants were

assayed for a panel of 13 cytokines by multiplex or ELISA (Figure 1). Of

the 13 cytokines tested, IL-9 and IL-17 were consistently below detection

level for all the TLR agonists studied. Also below detection level were all

the tested cytokines in nonstimulated cells. We observed that whereas

certain cytokines (IL-10, IL-6, IL-12, IFN-b, IFN-g, IL-4, and IL-5; Figure

1a–g) were greatly dependent on the TLR triggered, others (TNF, IL-23,

IL-27, and IL-22; Figure 1h–k) were produced in equivalent amounts, inde-

pendently of the stimulus. Within the first group, it was interesting to

note that TLR3 was the poorest inducer of cytokine production (Figure

1a–g), with the exception of IFN-b (Figure 1d), which was induced at

higher levels upon TLR3 stimulation of microglia. Furthermore, the pro-

duction of anti-inflammatory IL-10 (Figure 1a) by microglia was among

the most affected by the type of TLR stimulated. Indeed, IL-10 production

varied from the highest amounts induced downstream of TLR9 triggering,

to barely detectable ones downstream of TLR3 (Figure 1a). These differ-

ential responses were not dependent on the dose of agonist used to stim-

ulate microglia, as increasing the doses of TLR ligands did not result in

enhanced secretion of IL-10, nor of TNF (Supporting Information, Figure

1). In particular, increasing the doses of TLR3 agonist did not improve IL-

10 secretion, which was for most of the cases below detection level (data

not shown). We then tested whereas non-TLR stimuli would also induce

IL-10 production by microglia. We found that IL-10 production was also

triggered by fungal ligands for the PRR dectin-1 (Supporting Information,

Figure 2a). The combined stimulation dectin-1/TLR2 was a more potent

stimulus than either independent one (Supporting Information, Figure 2a),

being the same pattern was observed for TNF production (Supporting

Information, Figure 2b). Finally, we compared the production of IL-10

upon TLR stimulation of microglia to that of myeloid cells of the periphery,

namely primary mouse bone marrow-derived macrophages. The pattern

of IL-10 secretion upon TLR stimulation of macrophages for 24 hr (Sup-

porting Information, Figure 3) was similar to that observed for microglia.

Interestingly, for both cell types, TLR3 stimulation remained the poorer

inducer of IL-10 (Supporting Information, Figure 3).

Taken together, we show that microglia respond to different TLR

stimulation with the production of an array of cytokines. We highlight

IL-10 as a molecule which production is highly dependent on the stimuli

and TLR3 as a poor inducer of IL-10. Nevertheless, the pattern of IL-10

production is similar for myeloid cells of distinct embryonic origins.

3.2 | Modulation of IL-10 production by TLR3

Because both the activation of TLR3 and the presence of IL-10 have

been linked to neuroprotection in MS and EAE (Gooshe, Abdolghaffari,

Gambuzza, & Rezaei, 2014; Kwilasz et al., 2015), we were surprised to

see that activation of TLR3 in microglia was uncoupled from IL-10

secretion. We next questioned if TLR3 signaling could potentially inter-

fere with other TLRs, in what respects the induction of IL-10 in micro-

glia. It was interesting to observe that co-stimulation of TLR2-, TLR4-,

or TLR9-activated microglia with TLR3 significantly enhanced IL-10

production (Figure 2a–c). So, although TLR3 triggering of microglia

does not lead to productive IL-10 secretion, it is an enhancing signal

for IL-10 production in these cells.

To further understand the molecular events underlying the modula-

tion of IL-10 upon TLR3 co-stimulation of microglia, we focused on the

combination TLR2/TLR3. We measured the transcription of the Il10

gene over time in microglia stimulated via TLR2 alone, TLR3 alone or

the combination TLR2/TLR3. Consistent with the decreased amounts of

IL-10 protein, the transcription of the Il10 gene upon TLR3 stimulation

was significantly reduced as compared to that induced by TLR2 activa-

tion (Figure 2d). This suggested that the signaling downstream TLR3 is

not productive in what concerns IL-10 transcription. Co-stimulating

microglia with TLR2 and TLR3 did not enhance the amount of Il10

mRNA early poststimulation, when compared with TLR2 stimulation

alone (Figure 2d). However, whereas upon TLR2 activation a peak of

Il10 gene expression was detected at 1 hr poststimulation and progres-

sively decreased during the analyzed 6 hr, upon TLR2/TLR3 activation,

the level of IL-10 mRNA peaked at 1 hr and then again at 6 hr poststi-

mulation (Figure 2d). This suggested that in the combined stimulation a

second wave of Il10 transcription may be occurring, which would justify

the higher amounts of IL-10 protein detected in this case. Alternatively,

maintenance of the Il10 mRNA could result from increased Il10 mRNA

stability, as previously shown for macrophages (Teixeira-Coelho et al.,

2014). To investigate this hypothesis, microglia were stimulated with

TLR2 or TLR2/TLR3 and at 1 hr poststimulation actinomycin D was

added to the cultures and the IL-10 transcription followed for an extra

90 min. A similar decline in the detection of IL-10 either in single or

combined stimulation was observed (Figure 2e). Therefore, the combi-

nation of TLR3 with TLR2 triggering led to enhanced IL-10 transcription,

rather than enhanced mRNA stability, thus explaining the higher levels

of IL-10 produced by microglia upon TLR2/TLR3 co-stimulation.

3.3 | TLR3 activation enhances IL-10 production via

type I IFN receptor triggering

As the effect of TLR3 on IL-10 occurred after the initial wave of gene

transcription mediated by TLR2, we questioned whether a feedback

loop resulting from cytokines downstream of TLR3 could contribute to

the higher IL-10 production observed upon TLR2/TLR3 co-stimulation

of microglia. Considering the cytokine landscape obtained upon TLR3

triggering of microglia (Figure 1), if such mechanism was operating, the

best candidate molecule would be IFN-b, as it is strongly induced by

TLR3 (Figure 1g) and it has been described to potentiate IL-10 in stud-

ies performed with bone marrow-derived macrophages and dendritic

cells (Iyer, Ghaffari, & Cheng, 2010; F. W. McNab et al., 2014; Wang

et al., 2011). Furthermore, we observed an early transcription of the

Ifnb gene downstream of TLR3 signaling in microglia (Figure 3a), which

suggested that IFN-b would be produced early enough to modulate

the second Il10 transcriptional wave. Also, in line with the protein data

(Figure 1g), no Ifnb transcription was observed upon TLR2 stimulation

of microglia (Figure 3a). To test the role of IFN-b in inducing IL-10 in

microglia, we generated microglia from WT or IFNAR deficient mice,

which do not respond to type I IFNs (IFN-b or IFN-a). Although IL-10

production in response to single TLR2 or TLR3 stimulation was not

affected by the absence of IFNAR, microglia deficient for this receptor

failed to upregulate IL-10 production 24 hr poststimulation with TLR2
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FIGURE 1 Inflammatory landscape of TLR-stimulated microglia. (a–k). Primary microglial cell cultures were left unstimulated or stimulated
for 24 hr with chemical TLR agonists for TLR2, TLR3, TLR4, or TLR9, as described in Section 2. Cell culture supernatants were collected
and cytokine production was measured by multiplex assay (IL-10, TNF, IL-12p70, IL-23, IL-27, IL-22, IFN-g, IL-4, and IL-5) or ELISA (IL-6
and IFN-b). Unstimulated cells did not produce detectable amounts of cytokines. The detection limit for each cytokine is represented as a
dotted line in each graph. Represented are the mean6 SD for triplicate wells per condition set after mixed cultures generated from inde-
pendent mice. Statistical differences were assessed by one-way ANOVA or student’s t test. Significant statistical differences relative to
TLR2 are represented by *; to TLR3 by #; to TLR4 by $. One symbol, p< .05; two, p< .01; three, p< .001; and four, p< .0001. bdl, below
detection level
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and TLR3 (Figure 3b). Thus, our findings strongly suggest that the

production of type I IFN downstream of TLR3 triggering is a key

event for the modulation of IL-10 production by this receptor. To

further validate these findings, we compared the amount of IL-10

secreted by microglia co-stimulated with TLR2/TLR3 or with TLR2 in

combination with recombinant IFN-b. As shown in Figure 3c, treat-

ment of microglia with recombinant IFN-b did not induce IL-10 on

its own, but enhanced it when combined with TLR2 stimulation. Fur-

thermore, the transcriptional profile of the Il10 gene upon co-

stimulation of microglia with TLR2 and IFN-b was similar to that

observed for TLR2/TLR3 (Figure 3d) and the Il10 mRNA stability was

not altered by IFN-b (Figure 3e).

3.4 | Induction of IL-10 upon combined TLR2/TLR3

stimulation is not accompanied by an overall

deregulation of microglia

Co-stimulation of microglia with TLR3 enhanced IL-10 production via

IFN-b, thus opening a novel mechanism underlying its beneficial role in

MS and being a possible tool to locally regulate inflammatory

responses. For this, it is however important that TLR3 co-activation

does not promote an overall cytokine storm. To investigate if this was

the case, we run the multiplex panel in supernatants from microglia

stimulated with TLR2 in combination with TLR3 (Figure 4). Co-

stimulation of microglia via TLR2 and TLR3 did not lead to an overall

deregulation of microglia responses, with many cytokines remaining at

a level identical to that observed for TLR2 single stimulation (Figure 4).

It was interesting to note that IL-1b secretion, which was undetectable

upon single stimulation of TLR2 or TLR3, became detectable upon co-

stimulation of microglia (Figure 4k).

In addition to IL-10, another molecule found to be markedly upreg-

ulated in the case of TLR2/TLR3, as compared to TLR2 alone, was IL-

27 (Figure 4e). This cytokine has previously been implicated in the reg-

ulation of IL-10 production by macrophages in some reports (Iyer et al.,

2010). We thus questioned whether IL-27 could play a role in inducing

IL-10 by TLR2-activated microglia. Because IL-10 enhancement upon

TLR3 triggering depended on IFNAR (Figure 3b), we first measured IL-

27 production in WT or IFNAR-deficient microglia activated via TLR2/

FIGURE 2 TLR3 potentiates IL-10 production by TLR-stimulated microglia, by modulating the transcription of the Il10 gene. (a–c) WT
microglial cells were left unstimulated or stimulated for 24 hr with chemical agonists for TLR2, TLR4, or TLR9 alone or in combination with
a TLR3 agonist. Cell culture supernatants were collected and IL-10 production measured by ELISA. IL-10 production by unstimulated cells
was undetectable. (d) WT microglial cells were left unstimulated or stimulated with TLR2 (open circle) and TLR3 (close square) agonists

alone or in combination (close circle). RNA samples were collected at the indicated time-points and rt-PCR was performed to evaluate Il10
gene expression normalized to that of Hprt. (e) WT microglial cells were stimulated for 1 hr with the TLR2 agonist alone (open circle) or in
combination (close circle) with the TLR3 agonist and then actinomycin D was added to cells. RNA samples were collected at 30, 60, and 90
min after actinomycin D addition and rt-PCR was performed to evaluate Il10 gene expression as before. The dotted line represents 50% of
the RNA detected at 1 hr poststimulation. Represented are the mean6SD for triplicate wells per condition for two independent experi-
ments. Statistical differences were assessed by student’s t test or two-way ANOVA. Significant statistical differences are represented by **
to p< .01; *** to p< .001 and **** to p< .0001. ActD, actinomycin D; bdl, below detection level
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TLR3. IL-27 production by TLR2/TLR3 stimulated microglia was dimin-

ished in the absence of IFNAR (Figure 4l). We then assessed whether

IL-27 would augment IL-10 production by TLR2-stimulated microglia.

As before, stimulation of microglia with TLR2 and IFN-b augmented

the production of IL-10 (Figure 4m). However, this was not observed

when IFN-b was replaced by IL-27, nor did the addition of both IFN-b

and IL-27 to the cultures further increased IL-10 production (Figure

4m). Of note, stimulation of microglia with either recombinant cytokine

in the absence of TLR2 did not result in IL-10 production (Figure 4m).

Therefore, the increase in IL-10 secretion by TLR3/TLR2-stimulated

microglia seems to be directly potentiated by IFN-b, with no major role

for IL-27.

3.5 | IL-10 enhancement by TLR3 is modulated by

microenvironmental factors

Altogether, our data show that TLR3 potentiates IL-10 production in

microglia stimulated with a variety of PRR agonists and that this

involves the production of IFN-b and the activation of the IFNAR. Fur-

thermore, this IL-10 enhancement is not accompanied by an overshoot

FIGURE 3 IFN-b directly enhances IL-10 transcription in TLR-activated microglia. (a) WT microglial cells were stimulated for 6 hr with
TLR2 (open circle) or TLR3 (close square) agonists. RNA samples were collected at the indicated time-points poststimulation and rt-PCR
was performed to evaluate Ifnb gene expression. (b) Microglial cells generated from WT and IFNAR2/2 mice were stimulated with TLR2
and TLR3 agonists alone or in combination. Cell culture supernatants were collected 24 hr poststimulation and IL-10 production was meas-
ured by multiplex. (c) WT microglial cells were stimulated with TLR2 and TLR3 agonists in the presence or absence of recombinant IFN-b.
Cell culture supernatants were collected and IL-10 production was measured by ELISA. (d) WT microglial cells were stimulated for 6 hr with
the TLR2 agonist (open circle), recombinant IFN-b (close square) or with their combination (close circle). RNA samples were collected at the
indicated time-points poststimulation and rt-PCR was performed to evaluate Il10 gene expression. (e) WT microglial cells were stimulated
for 1 hr with the TLR2 agonist alone (open circle) or in combination with recombinant IFN-b (close circle) and then actinomycin D was
added to cells. The Il10 mRNA stability was measured as before. The dotted line represents 50% of the RNA detected at 1 hr after stimula-
tion. Represented are the mean6SD for triplicate wells per condition for two independent experiments. Statistical differences were
assessed by one- or two-way ANOVA. Significant statistical differences are represented by ** to p< .01; *** to p< .001; and **** to
p<0.0001. ActD, actinomycin D; bdl, below detection level
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FIGURE 4 TLR3 co-stimulation of microglia does not lead to overshooting responses. (a–k) WT microglial cells were stimulated for 24 hr
with TLR2 or TLR3 agonists alone or in combination. Cell culture supernatants were collected and cytokine production was measured by
multiplex assay (IL-12p70, IL-23, IL-27, IL-22, IFN-g, IL-4, and IL-5) or ELISA (TNF, IL-6, IFN-b, and IL-1b). Significant statistical differences
relative to TLR2 are represented by *; to TLR3 by #. (l) WT and IFNAR2/2 microglial cells were stimulated for 24 hr with the TLR2 or
TLR3 agonists alone or in combination. Cell culture supernatants were collected and IL-27 production was measured by multiplex. (m) WT
microglial cells were stimulated for 24 hr with the TLR2 agonist, IFN-b or IL-27 alone or in combination. Cell culture supernatants were col-
lected and IL-10 production was measured by ELISA. Significant statistical differences relative to TLR2 are represented by *; to TLR21 IFN-
b by #; to TLR21 IL-27 by $. The detection limit for each cytokine is represented as a dotted line in each graph. Represented are the
mean6SD for triplicate wells per condition set after mixed cultures generated from independent mice. Statistical differences were assessed
by student’s t test or one-way ANOVA. Significant statistical differences are represented by one symbol, p< .05; two, p< .01; three,
p< .001; and four, p< .0001. bdl, below detection level
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of the microglia response. These findings are interesting because IL-10

expression in the brain has been proposed as a therapeutic approach

for a series of neurological diseases with an immune component, such

as MS, Parkinson’s disease, and brain injury (Kwilasz et al., 2015). Fur-

thermore, because IFN-b is currently used in the clinics to treat MS

patients, it is tempting to speculate that it may exert its local action by

promoting IL-10 secretion. However, in the case of complex diseases

such as MS, the immune environment generated in the CNS also com-

prises T-cell-derived cytokines, notably IFN-g and IL-17. To understand

whether the presence of these cytokines would impact on the modula-

tion of IL-10 by TLR3 signaling, we stimulated microglia via TLR2 and

TLR3 and combined this with increasing doses of recombinant IL-17 or

IFN-g. Interestingly, whereas the IL-17-enriched environment did not

alter the modulation of IL-10 secretion by TLR3 (Figure 5a), the IFN-

g-enriched milieu totally abrogated it (Figure 5b). Therefore, the suc-

cessful modulation of IL-10 production in microglia by TLR3 or IFN-b

will clearly depend on the immune composition of the tissue microen-

vironment, a factor that needs to be taken into account in IL-10-based

therapies.

4 | DISCUSSION

Surveillance of the CNS by innate immune cells, such as resident micro-

glia, occurs in both physiological conditions and pathological states

(Ousman & Kubes, 2012) and is critical for the maintenance of the

CNS homeostasis. Pathways for initiating inflammation include an

expanding number of cellular sensors, namely the TLR family. Members

of this family are expressed on innate immune cells, including microglia

cells and astrocytes (Holley et al., 2012; Kawai & Akira, 2010). Activa-

tion of microglia through TLRs, and other PRRs, plays an important role

in initiating innate immune responses that protect the CNS from

aggressions, such as the presence of pathogens, and that promote tis-

sue regeneration after injury (Okun et al., 2009). However, cumulative

evidence show that persistently activated microglia, and reactive astro-

cytes, can also contribute to pathogenesis of several types of CNS dis-

eases, such as MS (Goverman, 2011; Okun et al., 2009). Therefore,

microglial cells may contribute to either neuroprotection or neurode-

generation, depending on the setting and the context they are in. Con-

sequently, switching microglial responses toward neuroprotection may

be beneficial in different diseases, for example, in MS (Weiner, 2008).

In this setting, the modulation of IL-10 production by activated micro-

glia might prove of interest.

Several studies addressed the importance of TLRs in MS pathol-

ogy, showing that the expression of these receptors is increased in

brain lesions of both MS and EAE (Bsibsi, Ravid, Gveric, & van Noort,

2002). Interestingly, whereas activation of TLR2, TLR4, and TLR9 is

detrimental in MS and EAE (Prinz et al., 2006; Visser et al., 2005), that

of TLR3 protects from disease (Gooshe et al., 2014; Touil, Fitzgerald,

Zhang, Rostami, & Gran, 2006). We started this study by looking at the

inflammatory landscape of microglia triggered by these TLRs. We

found that, overall, TLR3 was the least inflammatory TLR, as only low

cytokine levels were detected upon activation of microglia with polyI:

C, a TLR3 agonist. This poor reactivity of TLR3 may underlie its protec-

tive nature in EAE (Gooshe et al., 2014). Furthermore, TLR3 triggering

led to pronounced IFN-b secretion, a molecule that is currently used to

treat MS patients (Plosker, 2011; Trojano et al., 2009) and which pres-

ence is protective in EAE (Goldmann et al., 2016; Touil et al., 2006).

However, in apparent contrast with these data, we found that another

protective cytokine in EAE (Bettelli et al., 1998), the anti-inflammatory

cytokine IL-10, was poorly induced downstream of TLR3. In the con-

text of MS or EAE, tissue inflammation is accompanied by cellular

death, which releases several DAMPs and propagates microglia reactiv-

ity. It is therefore most likely that several TLRs, and indeed other PRRs,

get activated. When TLR3 activation was combined with that of the

other tested TLRs, a significant increase on the production of IL-10

FIGURE 5 The cytokine milieu impacts the TLR3-driven enhance-
ment of IL-10. WT microglial cells were stimulated for 24 hr with
TLR2 or TLR3 agonists alone or in combination in the absence or
presence of increasing doses of (a) IL-17 or (b) IFN-g. Cell culture
supernatants were collected and IL-10 production was measured
by ELISA. Represented are the mean6 SD for triplicate wells per
condition for two independent experiments. Statistical differences
were assessed by student’s t test or one-way ANOVA. Significant
statistical differences are represented by *** p< .001. bdl, below

detection level
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was observed. Importantly, this increase of IL-10 production as a result

of combined TLR2/TLR3 stimulation of microglia has a functional

impact. Indeed, whereas the production of IL-12 downstream of TLR2

or TLR3 stimulation is only mildly increased in IL-10-deficient microglia,

it is markedly enhanced in co-stimulated microglia, in the absence of

IL-10 (Supporting Information, Figure 4). Thus, the enhancement of IL-

10 in TLR2/TLR3 co-stimulated microglia appears to hamper proinflam-

matory responses. We narrowed the regulation of IL-10 by TLR3 down

to a positive feedback loop involving IFN-b that mechanistically

induced a second wave of Il10 gene transcription, but did not affect

the stability of the Il10 mRNA. This observation mirrors the effect of

IFN-b in innate immune cells of the periphery (Iyer et al., 2010; McNab

et al., 2014; Wang et al., 2011), supporting the existence of transversal

mechanisms operating in circulating versus resident macrophages, such

as microglia. We herein also show that the production of IL-10 by TLR-

activated microglia follows a pattern similar to that observed in con-

ventional macrophages derived from the bone marrow. TLR3 is the

sole TLR signaling only via the TRIF pathway (Kawai & Akira, 2010),

which has been previously involved in sustaining the stability of the

Il10 mRNA in bone marrow-derived macrophages (Teixeira-Coelho

et al., 2014). Thus, it is tempting to speculate that cell-specific mecha-

nisms are also in place, to ensure specificity in the regulation of IL-10.

Pinpointing the common, and the cell-specific, mechanisms regulating

this cytokine is critical if tailor-made interventions are to be envisaged.

The protective role for TLR3 in MS and EAE appears to be associ-

ated with the triggering of neuroprotective responses in astrocytes

(Bsibsi et al., 2010), but also with the release of IFN-b (Touil et al.,

2006) and of IL-27 (Fitzgerald et al., 2007) by innate immune cells of

the periphery. In EAE, lack of endogenous IFN-b in the CNS leads to

augmented microglia activation, resulting in a sustained inflammation,

cytokine production, and tissue damage with consequent chronic neu-

rological deficits (Teige et al., 2003) in support of an anti-inflammatory

role for this molecule. Furthermore, expression of IFN-b within the

CNS (Khorooshi et al., 2015), including in microglia (Kocur et al., 2015),

plays a protective role in EAE. Other studies further link IFN-b therapy

with an enhancement of IL-10 in MS and an accompanying inhibition

of T helper (Th) 17 cell responses (Krakauer, Sorensen, Khademi, Ols-

son, & Sellebjerg, 2008; Kvarnstrom, Ydrefors, Ekerfelt, Vrethem, &

Ernerudh, 2013; Ramgolam, Sha, Jin, Zhang, & Markovic-Plese, 2009;

Sweeney et al., 2011), but all do so in immune cells of the periphery.

We now reveal another protective action of IFN-b, by directly target-

ing microglia leading to enhanced IL-10 and IL-27, both protective

cytokines in MS. At least in microglia, these events seem to be unre-

lated, with the IFN-b potentiation of IL-10 being independent of IL-27.

This is in line with other studies performed in macrophages (McNab

et al., 2014) and contrasts with a possible role of IL-27 in promoting IL-

10 production by myeloid cells (Iyer et al., 2010) and effector Th cells

(Freitas do Rosario et al., 2012). As mentioned above, the response to

IFN-b therapy in MS has been correlated with an inhibition of Th17

cells (Krakauer et al., 2008; Kvarnstrom et al., 2013; Ramgolam et al.,

2009; Sweeney et al., 2011). As herein shown, the direct effect of IFN-

b in potentiating IL-10 secretion by TLR-activated microglia would still

occur in the context of IL-17, but would be largely compromised in the

presence of IFN-g. The role of IFN-g in modulating IL-10 production

by microglia is still not fully understood, but it is likely dependent on

the activation of glycogen synthase kinase (GSK)-3 (Green & Nolan,

2012). It is interesting to note that low amounts of IFN-g were

detected upon stimulation of the microglia cultures with TLR2, 4, and 9

agonists, but not upon TLR3 triggering. Yet, this pattern of endogenous

IFN-g production was not related to that of IL-10 expression. The fact

that absence of IFN-g under TLR3 stimulation did not license IL-10

production fits with the mechanism we propose, where low IL-10 trig-

gering in response to TLR3 stimulation is related to deficient basic tran-

scriptional activity. In further support of an independent endogenous

IFN-g vs IL-10 production, blocking of IFN-g with a neutralizing anti-

body did not alter IL-10 secretion by TLR2-stimulated microglia (Sup-

porting Information, Figure 5). In sum, by using an in vitro model of

neonate microglia activation, our study illustrates the complexity of the

events regulating microglial responses, providing hints to possible

mechanisms operating in the adult brain in the context of EAE. It will

be important to now probe these mechanisms in vivo, by resorting to

various genetically modified mice and to also address the effects of

microglia modulation on adjacent cells, notably on neurons.

Our data showing that IFN-b is a direct modulator of IL-10 in TLR-

activated microglia also has implications in the study of animal models

of MS. In a recent study, the most common mouse backgrounds used

in laboratory research (Balb/c and C57BL/6) were shown to bear

important differences in the ability of their macrophages to produce IL-

10 in response to TLR triggering (Howes et al., 2016). These differen-

ces were related to a differential induction of IFN-b in either back-

ground (Howes et al., 2016). If the same differences apply to microglia,

the use of either mouse strain to induce EAE may lead to distinct

results. In line with a possible impact of the mouse genetic background

in the response of microglia to TLR activation, previous studies

reported IFN-b production downstream of TLR9 activation in microglia

generated from IRW mice (Butchi et al., 2010). This was not the case in

our study, where C57BL/6 mice were used (Figure 1d).

The interaction between the brain and the immune system is now

accepted to play pivotal roles in health and disease, particularly in path-

ologies involving a strong neuroimmune component. Microglia are key

pieces in this interaction. As such, it is critical to understand the net-

work of events that drive microglia responses. Our study contributes

to this understanding in what regards the intrinsic orchestration of IL-

10 expression and the impact of the cytokine microenvironment in this

regulation. Understanding these processes is chief to the targeted

manipulation of IL-10 in the brain.
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