8,573 research outputs found

    Global continuous solutions to diagonalizable hyperbolic systems with large and monotone data

    Get PDF
    In this paper, we study diagonalizable hyperbolic systems in one space dimension. Based on a new gradient entropy estimate, we prove the global existence of a continuous solution, for large and nondecreasing initial data. Moreover, we show in particular cases some uniqueness results. We also remark that these results cover the case of systems which are hyperbolic but not strictly hyperbolic. Physically, this kind of diagonalizable hyperbolic systems appears naturally in the modelling of the dynamics of dislocation densities

    Analysis of models for quantum transport of electrons in graphene layers

    Full text link
    We present and analyze two mathematical models for the self consistent quantum transport of electrons in a graphene layer. We treat two situations. First, when the particles can move in all the plane \RR^2, the model takes the form of a system of massless Dirac equations coupled together by a selfconsistent potential, which is the trace in the plane of the graphene of the 3D Poisson potential associated to surface densities. In this case, we prove local in time existence and uniqueness of a solution in H^s(\RR^2), for s>3/8s > 3/8 which includes in particular the energy space H^{1/2}(\RR^2). The main tools that enable to reach s∈(3/8,1/2)s\in (3/8,1/2) are the dispersive Strichartz estimates that we generalized here for mixed quantum states. Second, we consider a situation where the particles are constrained in a regular bounded domain Ω\Omega. In order to take into account Dirichlet boundary conditions which are not compatible with the Dirac Hamiltonian H0H_{0}, we propose a different model built on a modified Hamiltonian displaying the same energy band diagram as H0H_{0} near the Dirac points. The well-posedness of the system in this case is proved in HAsH^s_{A}, the domain of the fractional order Dirichlet Laplacian operator, for 1/2≤s<5/21/2\leq s<5/2

    Derivation and study of dynamical models of dislocation densities

    Get PDF
    In this paper, starting from the microscopic dynamics of isolated dislocations, we explain how to derive formally mean field models for the dynamics of dislocation densities. Essentially these models are tranport equations, coupled with the equations of elasticity. Rigorous results of existence of solutions are presented for some of these models and the main ideas of the proofs are given

    Modeling the global positioning system signal propagation through the ionosphere

    Get PDF
    Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites
    • …
    corecore